DOI QR코드

DOI QR Code

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Shi, Wei (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Xing, Lanchang (College of Information and Control Engineering, China University of Petroleum (East China))
  • Received : 2019.02.28
  • Accepted : 2019.03.10
  • Published : 2019.07.25

Abstract

This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.

Acknowledgement

Supported by : China University of Petroleum

References

  1. Ahmadian, M. and Vahdati, N. (2006), "Transient dynamics of semiactive suspensions with hybrid control", J. Intel. Mat. Syst. Str., 17(2), 145-153. https://doi.org/10.1177/1045389X06056458. https://doi.org/10.1177/1045389X06056458
  2. Al-Holou, N., Lahdhiri, T., Joo, D.S., Weaver, J. and Al-Abbas, F. (2002), "Sliding mode neural network inference fuzzy logic control for active suspension systems", IEEE T. Fuzzy Syst., 10(2), 234-246. DOI: 10.1109/91.995124 https://doi.org/10.1109/91.995124
  3. Asai, T., Spencer, B.F., Iemura, H. and Chang, C.M. (2013), "Nature of seismic control force in acceleration feedback", Struct. Control Health Monit., 20(5), 789-803. https://doi.org/10.1002/stc.1496. https://doi.org/10.1002/stc.1496
  4. Balch, S.P. and Lakes, R.S. (2017), "Lumped negative stiffness damper for absorption of flexural waves in a rod", Smart Mater. Struct., 26(4), 045022. https://doi.org/10.1088/1361-665X/aa6122
  5. Chen, Z. H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing MR damper under harmonic loading", Smart Struct. Syst., 15(4), 1103-1120. https://doi.org/10.12989/sss.2015.15.4.1103. https://doi.org/10.12989/sss.2015.15.4.1103
  6. Choi, J.W., See, Y.B., Yoo, W.S. and Lee, M.H. (1998), "LQR approach using eigenstructure assignment with an active suspension control application", Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No. 98CH36104), IEEE, September.
  7. Choi, S.B., Lee, H.S. and Park, Y.P. (2002), "H8 control performance of a full-vehicle suspension featuring magnetorheological dampers", Vehicle Syst. Dyn., 38(5), 341-360. https://doi.org/10.1076/vesd.38.5.341.8283
  8. Churchill, C.B., Shahan, D.W., Smith, S.P., Keefe, A.C. and McKnight, G.P. (2016), "Dynamically variable negative stiffness structures", Sci. Adv., 2(2), e1500778. DOI: 10.1126/sciadv.1500778. https://doi.org/10.1126/sciadv.1500778
  9. Dong, X.M., Yu, M., Liao, C.R. and Chen, W.M. (2010), "Comparative research on semi-active control strategies for magneto-rheological suspension", Nonlinear Dynam., 59(3), 433-453. https://doi.org/10.1007/s11071-009-9550-8
  10. Du, H., Sze, K.Y. and Lam, J. (2005), "Semi-active $H{\infty}$ control of vehicle suspension with magneto-rheological dampers", J. Sound Vib., 283(3-5), 981-996. https://doi.org/10.1016/j.jsv.2004.05.030. https://doi.org/10.1016/j.jsv.2004.05.030
  11. Eslaminasab, N., Biglarbegian, M., Melek, W.W. and Golnaraghi, M.F. (2007), "A neural network based fuzzy control approach to improve ride comfort and road handling of heavy vehicles using semi-active dampers", Int. J. Heavy Veh. Syst., 14(2), 135-157. https://doi.org/10.1504/IJHVS.2007.013259. https://doi.org/10.1504/IJHVS.2007.013259
  12. Fialho, I. and Balas, G.J. (2002), "Road adaptive active suspension design using linear parameter-varying gain-scheduling", Institute of Electrical and Electronic Engineers.
  13. GB/T7031-1986 (1987), Vehicle vibration-describing method for road surface irregularity, Beijing: Standards Press of China (in Chinese).
  14. Guo, D.L., Hu, H.Y. and Yi, J.Q. (2004), "Neural network control for a semi-active vehicle suspension with a magnetorheological damper", Modal Anal., 10(3), 461-471. https://doi.org/10.1177/1077546304038968. https://doi.org/10.1177/1077546304038968
  15. Iemura, H. and Pradono, M.H. (2002), "Passive and semi-active seismic response control of a cable-stayed bridge", Struct. Control Health Monit., 9(3), 189-204. https://doi.org/10.1002/stc.12.
  16. Iemura, H. and Pradono, M.H. (2005), "Simple algorithm for semi-active seismic response control of cable-stayed bridges", Earthq. Eng. Struct. D., 34(4-5), 409-423. https://doi.org/10.1002/eqe.440. https://doi.org/10.1002/eqe.440
  17. Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799. https://doi.org/10.1002/stc.345. https://doi.org/10.1002/stc.345
  18. Iemura, H., Igarashi, A., Pradono, M.H. and Kalantari, A. (2006), "Negative stiffness friction damping for seismically isolated structures", Struct. Control Health Monit., 13(2-3), 775-791. https://doi.org/10.1002/stc.111. https://doi.org/10.1002/stc.111
  19. Kanarachos, S., Dizqah, A.M., Chrysakis, G. and Fitzpatrick, M. E., (2018), "Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based fruit fly optimization", Appl. Soft Comput., 62, 463-477. https://doi.org/10.1016/j.asoc.2017.11.005. https://doi.org/10.1016/j.asoc.2017.11.005
  20. Karlsson, N., Dahleh, M. and Hrovat, D., (2001), "Nonlinear $H{\infty}$ control of active suspensions", Proceedings of the 2001 American Control Conference, (Cat. No. 01CH37148), IEEE.
  21. Le, T.D. and Ahn, K.K. (2011), "A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat", J. Sound Vib., 330(26), 6311-6335. https://doi.org/10.1016/j.jsv.2011.07.039. https://doi.org/10.1016/j.jsv.2011.07.039
  22. Lee, C.M. and Goverdovskiy, V.N. (2012), "A multi-stage high-speed railroad vibration isolation system with "negative" stiffness", J. Sound Vib., 331(4), 914-921. https://doi.org/10.1016/j.jsv.2011.09.014. https://doi.org/10.1016/j.jsv.2011.09.014
  23. Lee, C.M., Goverdovskiy, V.N. and Temnikov, A.I. (2007), "Design of springs with "negative" stiffness to improve vehicle driver vibration isolation", J. Sound Vib., 302(4-5), 865-874. https://doi.org/10.1016/j.jsv.2006.12.024. https://doi.org/10.1016/j.jsv.2006.12.024
  24. Lee, C.M., Goverdovskiy, V.N., Sim, C.S. and Lee, J.H. (2016), "Ride comfort of a high-speed train through the structural upgrade of a bogie suspension", J. Sound Vib., 361, 99-107. https://doi.org/10.1016/j.jsv.2015.07.019. https://doi.org/10.1016/j.jsv.2015.07.019
  25. Li, H., Liu, M. and Ou, J. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142. https://doi.org/10.1002/stc.200. https://doi.org/10.1002/stc.200
  26. Liu, Y., Yu, D.P. and Yao, J. (2016), "Design of an adjustable cam based constant force mechanism", Mechanism and Machine Theory, 103, 85-97. https://doi.org/10.1016/j.mechmachtheory.2016.04.014. https://doi.org/10.1016/j.mechmachtheory.2016.04.014
  27. Ni, Y.Q., Ye, S.Q. and Song, S.D. (2016), "An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort", Smart Struct. Syst., 18(1), 53-74. https://doi.org/10.12989/sss.2016.18.1.053. https://doi.org/10.12989/sss.2016.18.1.053
  28. Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2012), "Adaptive negative stiffness: new structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615.
  29. Platus, D.L. and Ferry, D.K. (2007), "Negative-stiffness vibration isolation improves reliability of nanoinstrumentation", Laser Focus World, 43(10), 107.
  30. Priyandoko, G., Mailah, M. and Jamaluddin, H. (2009), "Vehicle active suspension system using skyhook adaptive neuro active force control", Mech. Syst. Signal Pr., 23(3), 855-868. https://doi.org/10.1016/j.ymssp.2008.07.014. https://doi.org/10.1016/j.ymssp.2008.07.014
  31. Savaresi, S. M., Silani, E., Bittanti, S. and Porciani, N. (2003). "On performance evaluation methods and control strategies for semi-active suspension systems", Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), IEEE, December.
  32. Scheibe, F. and Smith, M.C. (2009), "Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions", Vehicle Syst. Dynam., 47(10), 1229-1252. https://doi.org/10.1080/00423110802588323. https://doi.org/10.1080/00423110802588323
  33. Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
  34. Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A: Phys., 259, 14-33. https://doi.org/10.1016/j.sna.2017.03.026. https://doi.org/10.1016/j.sna.2017.03.026
  35. Shi, X., Zhu, S. and Nagarajaiah, S. (2017b), "Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation", J. Bridge Eng., 22(9), 04017054. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001088. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001088
  36. Shi, X., Zhu, S. and Spencer, Jr. B.F. (2017a), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001289
  37. Shi, X., Zhu, S., Li, J.Y. and Spencer, Jr. B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044. https://doi.org/10.1088/0964-1726/25/7/075044
  38. Shi, X., Zhu, S., Niu, Y.Q. and Li, J. (2018), "Vibration suppression in high-speed trains with negative stiffness dampers", Smart Struct. Syst., 21(5), 653-668. https://doi.org/10.12989/sss.2018.21.5.653. https://doi.org/10.12989/SSS.2018.21.5.653
  39. Sohn, H.C., Hong, K.S. and Hedrick, J.K. (2000), "Semi-active control of the Macpherson suspension system: hardware-in-the-loop simulations", Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No. 00CH37162), IEEE.
  40. Sun, T., Lai, Z., Nagarajaiah, S. and Li, H.N. (2017), "Negative stiffness device for seismic protection of smart base isolated benchmark building", Struct. Control Health Monit.. 24(11), https://doi.org/10.1002/stc.1968.
  41. Sung, K.G., Han, Y.M., Lim, K.H. and Choi, S.B. (2007), "Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper", Smart Mater. Struct., 16(3), 798. https://doi.org/10.1088/0964-1726/16/3/029
  42. Wang, E.R., Ma, X.Q., Rakheja, S. and Su, C.Y. (2003), "Semi-active control of vehicle vibration with MR-dampers", In Decision and Control, 2003. Proceedings of the 42nd IEEE Conference on IEEE, December.
  43. Wang, H.P., Mustafa, G.I. and Tian, Y. (2018), "Model-free fractional-order sliding mode control for an active vehicle suspension system", Adv. Eng. Softw., 115, 452-461. https://doi.org/10.1016/j.advengsoft.2017.11.001. https://doi.org/10.1016/j.advengsoft.2017.11.001
  44. Wang, Y.C. and Lakes, R.S. (2004), "Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements", Appl. Phys. Lett., 84(22), 4451-4453. https://doi.org/10.1063/1.1759064. https://doi.org/10.1063/1.1759064
  45. Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007
  46. Yagiz, N. and Sakman, L.E. (2005), "Robust sliding mode control of a full vehicle without suspension gap loss", Modal Anal., 11(11), 1357-1374. https://doi.org/10.1177/1077546305058268. https://doi.org/10.1177/1077546305058268
  47. Yang, J., Xiong, Y.P. and Xing, J.T. (2013), "Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism", J. Sound Vib., 332(1), 167-183. https://doi.org/10.1016/j.jsv.2012.08.010. https://doi.org/10.1016/j.jsv.2012.08.010
  48. Yao, G.Z., Yap, F.F., Chen, G., Li, W. and Yeo, S.H. (2002), "MR damper and its application for semi-active control of vehicle suspension system", Mechatronics, 12(7), 963-973. https://doi.org/10.1016/S0957-4158(01)00032-0. https://doi.org/10.1016/S0957-4158(01)00032-0
  49. Ying, Z.G., Zhu, W.Q. and Soong, T.T. (2003), "A stochastic optimal semi-active control strategy for ER/MR dampers", J. Sound Vib., 259(1), 45-62. https://doi.org/10.1006/jsvi.2002.5136. https://doi.org/10.1006/jsvi.2002.5136