Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Shi, Wei (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Xing, Lanchang (College of Information and Control Engineering, China University of Petroleum (East China))
  • Received : 2019.02.28
  • Accepted : 2019.03.10
  • Published : 2019.07.25


This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.


Supported by : China University of Petroleum


  1. Ahmadian, M. and Vahdati, N. (2006), "Transient dynamics of semiactive suspensions with hybrid control", J. Intel. Mat. Syst. Str., 17(2), 145-153.
  2. Al-Holou, N., Lahdhiri, T., Joo, D.S., Weaver, J. and Al-Abbas, F. (2002), "Sliding mode neural network inference fuzzy logic control for active suspension systems", IEEE T. Fuzzy Syst., 10(2), 234-246. DOI: 10.1109/91.995124
  3. Asai, T., Spencer, B.F., Iemura, H. and Chang, C.M. (2013), "Nature of seismic control force in acceleration feedback", Struct. Control Health Monit., 20(5), 789-803.
  4. Balch, S.P. and Lakes, R.S. (2017), "Lumped negative stiffness damper for absorption of flexural waves in a rod", Smart Mater. Struct., 26(4), 045022.
  5. Chen, Z. H., Ni, Y.Q. and Or, S.W. (2015), "Characterization and modeling of a self-sensing MR damper under harmonic loading", Smart Struct. Syst., 15(4), 1103-1120.
  6. Choi, J.W., See, Y.B., Yoo, W.S. and Lee, M.H. (1998), "LQR approach using eigenstructure assignment with an active suspension control application", Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No. 98CH36104), IEEE, September.
  7. Choi, S.B., Lee, H.S. and Park, Y.P. (2002), "H8 control performance of a full-vehicle suspension featuring magnetorheological dampers", Vehicle Syst. Dyn., 38(5), 341-360.
  8. Churchill, C.B., Shahan, D.W., Smith, S.P., Keefe, A.C. and McKnight, G.P. (2016), "Dynamically variable negative stiffness structures", Sci. Adv., 2(2), e1500778. DOI: 10.1126/sciadv.1500778.
  9. Dong, X.M., Yu, M., Liao, C.R. and Chen, W.M. (2010), "Comparative research on semi-active control strategies for magneto-rheological suspension", Nonlinear Dynam., 59(3), 433-453.
  10. Du, H., Sze, K.Y. and Lam, J. (2005), "Semi-active $H{\infty}$ control of vehicle suspension with magneto-rheological dampers", J. Sound Vib., 283(3-5), 981-996.
  11. Eslaminasab, N., Biglarbegian, M., Melek, W.W. and Golnaraghi, M.F. (2007), "A neural network based fuzzy control approach to improve ride comfort and road handling of heavy vehicles using semi-active dampers", Int. J. Heavy Veh. Syst., 14(2), 135-157.
  12. Fialho, I. and Balas, G.J. (2002), "Road adaptive active suspension design using linear parameter-varying gain-scheduling", Institute of Electrical and Electronic Engineers.
  13. GB/T7031-1986 (1987), Vehicle vibration-describing method for road surface irregularity, Beijing: Standards Press of China (in Chinese).
  14. Guo, D.L., Hu, H.Y. and Yi, J.Q. (2004), "Neural network control for a semi-active vehicle suspension with a magnetorheological damper", Modal Anal., 10(3), 461-471.
  15. Iemura, H. and Pradono, M.H. (2002), "Passive and semi-active seismic response control of a cable-stayed bridge", Struct. Control Health Monit., 9(3), 189-204.
  16. Iemura, H. and Pradono, M.H. (2005), "Simple algorithm for semi-active seismic response control of cable-stayed bridges", Earthq. Eng. Struct. D., 34(4-5), 409-423.
  17. Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799.
  18. Iemura, H., Igarashi, A., Pradono, M.H. and Kalantari, A. (2006), "Negative stiffness friction damping for seismically isolated structures", Struct. Control Health Monit., 13(2-3), 775-791.
  19. Kanarachos, S., Dizqah, A.M., Chrysakis, G. and Fitzpatrick, M. E., (2018), "Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based fruit fly optimization", Appl. Soft Comput., 62, 463-477.
  20. Karlsson, N., Dahleh, M. and Hrovat, D., (2001), "Nonlinear $H{\infty}$ control of active suspensions", Proceedings of the 2001 American Control Conference, (Cat. No. 01CH37148), IEEE.
  21. Le, T.D. and Ahn, K.K. (2011), "A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat", J. Sound Vib., 330(26), 6311-6335.
  22. Lee, C.M. and Goverdovskiy, V.N. (2012), "A multi-stage high-speed railroad vibration isolation system with "negative" stiffness", J. Sound Vib., 331(4), 914-921.
  23. Lee, C.M., Goverdovskiy, V.N. and Temnikov, A.I. (2007), "Design of springs with "negative" stiffness to improve vehicle driver vibration isolation", J. Sound Vib., 302(4-5), 865-874.
  24. Lee, C.M., Goverdovskiy, V.N., Sim, C.S. and Lee, J.H. (2016), "Ride comfort of a high-speed train through the structural upgrade of a bogie suspension", J. Sound Vib., 361, 99-107.
  25. Li, H., Liu, M. and Ou, J. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142.
  26. Liu, Y., Yu, D.P. and Yao, J. (2016), "Design of an adjustable cam based constant force mechanism", Mechanism and Machine Theory, 103, 85-97.
  27. Ni, Y.Q., Ye, S.Q. and Song, S.D. (2016), "An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort", Smart Struct. Syst., 18(1), 53-74.
  28. Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2012), "Adaptive negative stiffness: new structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123.
  29. Platus, D.L. and Ferry, D.K. (2007), "Negative-stiffness vibration isolation improves reliability of nanoinstrumentation", Laser Focus World, 43(10), 107.
  30. Priyandoko, G., Mailah, M. and Jamaluddin, H. (2009), "Vehicle active suspension system using skyhook adaptive neuro active force control", Mech. Syst. Signal Pr., 23(3), 855-868.
  31. Savaresi, S. M., Silani, E., Bittanti, S. and Porciani, N. (2003). "On performance evaluation methods and control strategies for semi-active suspension systems", Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), IEEE, December.
  32. Scheibe, F. and Smith, M.C. (2009), "Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions", Vehicle Syst. Dynam., 47(10), 1229-1252.
  33. Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002.
  34. Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A: Phys., 259, 14-33.
  35. Shi, X., Zhu, S. and Nagarajaiah, S. (2017b), "Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation", J. Bridge Eng., 22(9), 04017054.
  36. Shi, X., Zhu, S. and Spencer, Jr. B.F. (2017a), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070.
  37. Shi, X., Zhu, S., Li, J.Y. and Spencer, Jr. B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044.
  38. Shi, X., Zhu, S., Niu, Y.Q. and Li, J. (2018), "Vibration suppression in high-speed trains with negative stiffness dampers", Smart Struct. Syst., 21(5), 653-668.
  39. Sohn, H.C., Hong, K.S. and Hedrick, J.K. (2000), "Semi-active control of the Macpherson suspension system: hardware-in-the-loop simulations", Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No. 00CH37162), IEEE.
  40. Sun, T., Lai, Z., Nagarajaiah, S. and Li, H.N. (2017), "Negative stiffness device for seismic protection of smart base isolated benchmark building", Struct. Control Health Monit.. 24(11),
  41. Sung, K.G., Han, Y.M., Lim, K.H. and Choi, S.B. (2007), "Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper", Smart Mater. Struct., 16(3), 798.
  42. Wang, E.R., Ma, X.Q., Rakheja, S. and Su, C.Y. (2003), "Semi-active control of vehicle vibration with MR-dampers", In Decision and Control, 2003. Proceedings of the 42nd IEEE Conference on IEEE, December.
  43. Wang, H.P., Mustafa, G.I. and Tian, Y. (2018), "Model-free fractional-order sliding mode control for an active vehicle suspension system", Adv. Eng. Softw., 115, 452-461.
  44. Wang, Y.C. and Lakes, R.S. (2004), "Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements", Appl. Phys. Lett., 84(22), 4451-4453.
  45. Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007.
  46. Yagiz, N. and Sakman, L.E. (2005), "Robust sliding mode control of a full vehicle without suspension gap loss", Modal Anal., 11(11), 1357-1374.
  47. Yang, J., Xiong, Y.P. and Xing, J.T. (2013), "Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism", J. Sound Vib., 332(1), 167-183.
  48. Yao, G.Z., Yap, F.F., Chen, G., Li, W. and Yeo, S.H. (2002), "MR damper and its application for semi-active control of vehicle suspension system", Mechatronics, 12(7), 963-973.
  49. Ying, Z.G., Zhu, W.Q. and Soong, T.T. (2003), "A stochastic optimal semi-active control strategy for ER/MR dampers", J. Sound Vib., 259(1), 45-62.