DOI QR코드

DOI QR Code

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Received : 2018.08.11
  • Accepted : 2018.10.11
  • Published : 2019.07.31

Abstract

Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

Keywords

References

  1. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
  2. L. Angeleri Hugel and D. Herbera, Mittag-Leffler conditions on modules, Indiana Univ. Math. J. 57 (2008), no. 5, 2459-2517. https://doi.org/10.1512/iumj.2008.57.3325
  3. G. Azumaya, Finite splitness and finite projectivity, J. Algebra 106 (1987), no. 1, 114-134. https://doi.org/10.1016/0021-8693(87)90024-X
  4. J. Baeck, G. Lee, and J. W. Lim, S-Noetherian rings and their extensions, Taiwanese J. Math. 20 (2016), no. 6, 1231-1250. https://doi.org/10.11650/tjm.20.2016.7436
  5. S. Bazzoni and L. Positselski, S-almost perfect commutative rings, eprint arXiv:1801.04820, (2018).
  6. D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512. https://doi.org/10.4134/JKMS.j170797
  7. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. https://doi.org/10.2307/1993382
  8. M. Cortes-Izurdiaga, Products of flat modules and global dimension relative to F-Mittag-Leffler modules, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4557-4571. https://doi.org/10.1090/proc/13059
  9. F. Couchot, Finitistic weak dimension of commutative arithmetical rings, Arab. J. Math. (Springer) 1 (2012), no. 1, 63-67. https://doi.org/10.1007/s40065-012-0023-4
  10. K. R. Goodearl, Distributing tensor product over direct product, Pacific J. Math. 43 (1972), 107-110. http://projecteuclid.org/euclid.pjm/1102959646 https://doi.org/10.2140/pjm.1972.43.107
  11. P. Griffth, On the decomposition of modules and generalized left uniserial rings, Math. Ann. 184 (1969/1970), 300-308. https://doi.org/10.1007/BF01350858
  12. D. Herbera and J. Trlifaj, Almost free modules and Mittag-Leffler conditions, Adv. Math. 229 (2012), no. 6, 3436-3467. https://doi.org/10.1016/j.aim.2012.02.013
  13. H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332. https://doi.org/10.1016/j.jalgebra.2014.06.015
  14. H. Kim and J. W. Lim, $S-\ast_w$-principal ideal domains, Algebra Colloq. 25 (2018), no. 2, 217-224. https://doi.org/10.1142/S1005386718000159
  15. J. W. Lim, A note on S-Noetherian domains, Kyungpook Math. J. 55 (2015), no. 3, 507-514. https://doi.org/10.5666/KMJ.2015.55.3.507
  16. J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
  17. J. W. Lim and D. Y. Oh, S-Noetherian properties of composite ring extensions, Comm. Algebra 43 (2015), no. 7, 2820-2829. https://doi.org/10.1080/00927872.2014.904329
  18. Ph. Rothmaler, Mittag-Leffler modules and positive atomicity, Habilitationsschrift, Kiel, 1994.
  19. Ph. Rothmaler, Torsion-free, divisible, and Mittag-Leffler modules, Comm. Algebra 43 (2015), no. 8, 3342-3364. https://doi.org/10.1080/00927872.2014.918990
  20. J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
  21. D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), no. 2, 91-116. https://doi.org/10.4064/fm-96-2-91-116