DOI QR코드

DOI QR Code

Non-clinical pharmacokinetic behavior of ginsenosides

  • Won, Hyo-Joong (College of Pharmacy, Chung-Ang University) ;
  • Kim, Hyun Il (College of Pharmacy, Chung-Ang University) ;
  • Park, Taejun (College of Pharmacy, Chung-Ang University) ;
  • Kim, Hyeongmin (College of Pharmacy, Chung-Ang University) ;
  • Jo, Kanghee (College of Pharmacy, Chung-Ang University) ;
  • Jeon, Hyojin (College of Pharmacy, Chung-Ang University) ;
  • Ha, Seo Jun (College of Pharmacy, Chung-Ang University) ;
  • Hyun, Jung Min (Department of Pharmaceutical Industry Management, The Graduate School of Chung-Ang University) ;
  • Jeong, Aeri (Department of Pharmaceutical Industry Management, The Graduate School of Chung-Ang University) ;
  • Kim, Jung Sik (Department of Pharmaceutical Industry Management, The Graduate School of Chung-Ang University) ;
  • Park, Ye Jin (Department of Pharmaceutical Industry Management, The Graduate School of Chung-Ang University) ;
  • Eo, Yun Ho (Department of Pharmaceutical Industry Management, The Graduate School of Chung-Ang University) ;
  • Lee, Jaehwi (College of Pharmacy, Chung-Ang University)
  • Received : 2018.04.30
  • Accepted : 2018.06.11
  • Published : 2019.07.15

Abstract

Ginsenosides, the major active ingredients of ginseng and other plants of the genus Panax, have been used as natural medicines in the East for a long time; in addition, their popularity in the West has increased owing to their various beneficial pharmacological effects. There is therefore a wealth of literature regarding the pharmacological effects of ginsenosides. In contrast, there are few comprehensive studies that investigate their pharmacokinetic behaviors. This is because ginseng contains the complicated mixture of herbal materials as well as thousands of constituents with complex chemical properties, and ginsenosides undergo multiple biotransformation processes after administration. This is a significant issue as pharmacokinetic studies provide crucial data regarding the efficacy and safety of compounds. Moreover, there have been many difficulties in the development of the optimal dosage regimens of ginsenosides and the evaluation of their interactions with other drugs. Therefore, this review details the pharmacokinetic properties and profiles of ginsenosides determined in various animal models administered through different routes of administration. Such information is valuable for designing specialized delivery systems and determining optimal dosing strategies for ginsenosides.

Keywords

References

  1. Park SE, Na CS, Yoo SA, Seo SH, Son HS. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J Ginseng Res 2017;41:36-42. https://doi.org/10.1016/j.jgr.2015.12.008
  2. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143-9. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  3. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012;202:342-51. https://doi.org/10.1016/j.neuroscience.2011.11.070
  4. Park JS, Shin JA, Jung JS, Hyun JW, Le TKV, Kim DH, Park EM, Kim HS. Antiinflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035
  5. Zhang YJ, Zhang XL, Li MH, Iqbal J, Bourantas CV, Li JJ, Su XY, Muramatsu T, Tian NL, Chen SL. The ginsenoside Rg1 prevents transverse aortic constrictioninduced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis. J Cardiovasc Pharm 2013;62:50-7. https://doi.org/10.1097/FJC.0b013e31828f8d45
  6. Shi YH, Han B, Yu XF, Qu SC, Sui DY. Ginsenoside Rb3 ameliorates myocardial ischemia-reperfusion injury in rats. Pharm Biol 2011;49:900-6. https://doi.org/10.3109/13880209.2011.554845
  7. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  8. Li J, Shao ZH, Xie JT, Wang CZ, Ramachandran S, Yin JJ, Aung H, Li CQ, Qin G, Vanden Hoek T, et al. The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. Arch Pharm Res 2012;35:1259-67. https://doi.org/10.1007/s12272-012-0717-3
  9. Wang J, Qiao LF, Li SS, Yang GT. Protective effect of ginsenoside Rb1 against lung injury induced by intestinal ischemia-reperfusion in rats. Molecules 2013;18:1214-26. https://doi.org/10.3390/molecules18011214
  10. Wong VKW, Cheung SSF, Li T, Jiang ZH, Wang JR, Dong H, Yi XQ, Zhou H, Liu LA. Asian ginseng extract inhibits in vitro and in vivo growth of mouse Lewis lung carcinoma via modulation of ERK-p53 and $NF-{\kappa}B$ signaling. J Cell Biochem 2010;111:899-910. https://doi.org/10.1002/jcb.22778
  11. Geng L, Fan J, Gao QL, Yu J, Hua BJ. Preliminary study for the roles and mechanisms of 20(R)-ginsenoside Rg3 and PEG-PLGA-Rg3 nanoparticles in the Lewis lung cancer mice. Beijing Da Xue Xue Bao Yi Xue Ban 2016;48:496-501.
  12. Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016;40:437-44. https://doi.org/10.1016/j.jgr.2016.08.003
  13. Zhang JJ, Ding LL, Wang BC, Ren GY, Sun AN, Deng C, Wei XH, Mani S, Wang ZT, Dou W. Notoginsenoside R1 attenuates experimental inflammatory bowel disease via pregnane X receptor activation. J Pharmacol Exp Ther 2015;352:315-24. https://doi.org/10.1124/jpet.114.218750
  14. Tan SJ, Yu WK, Lin ZL, Chen QY, Shi JL, Dong Y, Duan KP, Bai XW, Xu L, Li JS, et al. Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus. Biol Pharm Bull 2014;37:1788-94. https://doi.org/10.1248/bpb.b14-00441
  15. Hwang JW, Baek YM, Jang IS, Yang KE, Lee DG, Yoon SJ, Rho J, Cho CK, Lee YW, Kwon KR, et al. An enzymatically fortified ginseng extract inhibits proliferation and induces apoptosis of KATO3 human gastric cancer cells via modulation of Bax, mTOR, PKB and IkBa. Mol Med Rep 2015;11:670-6. https://doi.org/10.3892/mmr.2014.2704
  16. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 2014;38:89-96. https://doi.org/10.1016/j.jgr.2013.10.001
  17. Hou YL, Tsai YH, Lin YH, Chao JCJ. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complem Altern Med 2014:14.
  18. Tao TZ, Chen F, Bo LL, Xie Q, Yi WJ, Zou Y, Hu BJ, Li JB, Deng XM. Ginsenoside Rg1 protects mouse liver against ischemia-reperfusion injury through antiinflammatory and anti-apoptosis properties. J Surg Res 2014;191:231-8. https://doi.org/10.1016/j.jss.2014.03.067
  19. Gao Y, Chu SF, Li JW, Li JP, Zhang Z, Xia CY, Heng Y, Zhang MJ, Hu JF, Wei GN, et al. Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol 2015;173:231-40. https://doi.org/10.1016/j.jep.2015.07.020
  20. Park HM, Kim SJ, Kim JS, Kang HS. Reactive oxygen species mediated ginsenoside Rg3- and Rh2-induced apoptosis in hepatoma cells through mitochondrial signaling pathways. Food Chem Toxicol 2012;50:2736-41. https://doi.org/10.1016/j.fct.2012.05.027
  21. Ko H, Kim YJ, Park JS, Park JH, Yang HO. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells. Biosci Biotech Biochem 2009;73:2183-9. https://doi.org/10.1271/bbb.90250
  22. Toh DF, Patel DN, Chan ECY, Teo A, Neo SY, Koh HL. Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells. Chin Med UK 2011;6:4. https://doi.org/10.1186/1749-8546-6-4
  23. Yokozawa T, Kobayashi T, Oura H, Kawashima Y. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull (Tokyo) 1985;33:869-72. https://doi.org/10.1248/cpb.33.869
  24. Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-8. https://doi.org/10.1248/bpb.33.325
  25. Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J Ethnopharmacol 2016;190:231-40. https://doi.org/10.1016/j.jep.2016.05.060
  26. Wei S, Li W, Yu Y, Yao F, A L, Lan X, Guan F, Zhang M, Chen L. Ginsenoside compound K suppresses the hepatic gluconeogenesis via activating adenosine-50 monophosphate kinase: a study in vitro and in vivo. Life Sci 2015;139:8-15. https://doi.org/10.1016/j.lfs.2015.07.032
  27. Yang XL, Guo TK, Wang YH, Gao MT, Qin H, Wu YJ. Therapeutic effect of ginsenoside Rd in rats with TNBS-induced recurrent ulcerative colitis. Arch Pharm Res 2012;35:1231-9. https://doi.org/10.1007/s12272-012-0714-6
  28. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301:185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  29. Wang CZ, Yuan CS. Potential role of ginseng in the treatment of colorectal cancer. Am J Chin Med 2008;36:1019-28. https://doi.org/10.1142/S0192415X08006545
  30. Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW, Park JH. Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Biosci Biotechnol Biochem 2009;73:811-6. https://doi.org/10.1271/bbb.80637
  31. Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW, Hong JT. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res 2009;32:755-65. https://doi.org/10.1007/s12272-009-1515-4
  32. Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemiareperfusion model. Nephron 1998;78:201-6. https://doi.org/10.1159/000044911
  33. Baek SH, Shin BK, Kim NJ, Chang SY, Park JH. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. J Ginseng Res 2017;41:233-9. https://doi.org/10.1016/j.jgr.2016.03.008
  34. Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
  35. Cui JF, Garle M, Bjorkhem I, Eneroth P. Determination of aglycones of ginsenosides in ginseng preparations sold in Sweden and in urine samples from Swedish athletes consuming ginseng. Scand J Clin Lab Invest 1996;56:151-60. https://doi.org/10.3109/00365519609088602
  36. He W, Wang J, Zhang L, Liu Z. Biotransformation of ginsenosides and their aglycones. Int J Biomed Pharmaceut Sci 2012;6:45-55.
  37. Qi LW, Wang CZ, Du GJ, Zhang ZY, Calway T, Yuan CS. Metabolism of ginseng and its interactions with drugs. Curr Drug Metab 2011;12:818-22. https://doi.org/10.2174/138920011797470128
  38. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003;84:187-92. https://doi.org/10.1016/S0378-8741(02)00317-3
  39. Takino Y. Studies on the pharmacodynamics of ginsenoside-Rg1, -Rb1 and -Rb2 in rats. Yakugaku Zasshi 1994;114:550-64. https://doi.org/10.1248/yakushi1947.114.8_550
  40. Li X, Wang G, Sun J, Hao H, Xiong Y, Yan B, Zheng Y, Sheng L. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional Chinese medicine (TCM) in rats. Biol Pharm Bull 2007;30:847-51. https://doi.org/10.1248/bpb.30.847
  41. Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, Lv T, Zheng YT, Sai Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 2009;47:2257-68. https://doi.org/10.1016/j.fct.2009.06.013
  42. Xie HT, Wang GJ, Sun JG, Tucker I, Zhao XC, Xie YY, Li H, Jiang XL, Wang R, Xu MJ, et al. High performance liquid chromatographic-mass spectrometric determination of ginsenoside Rg3 and its metabolites in rat plasma using solid-phase extraction for pharmacokinetic studies. J Chromatogr B 2005;818:167-73. https://doi.org/10.1016/j.jchromb.2004.12.028
  43. Xie HT, Wang GJ, Lv H, Sun RWJG, Jiang XL, Li H, Wang W, Huang CR, Xu MJ. Development of a HPLC-MS assay for ginsenoside Rh2, a new anti-tumor substance from natural product and its pharmacokinetic study in dogs. Eur J Drug Metab Pharmacokinet 2005;30:63-7. https://doi.org/10.1007/BF03226409
  44. Lai L, Hao H, Liu Y, Zheng C, Wang Q, Wang G, Chen X. Characterization of pharmacokinetic profiles and metabolic pathways of 20(S)-ginsenoside Rh1 in vivo and in vitro. Planta Med 2009;75:797-802. https://doi.org/10.1055/s-0029-1185400
  45. Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, Lee SJ, Lee SY, Lim KM. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal 2010;51:278-83. https://doi.org/10.1016/j.jpba.2009.08.013
  46. Kim HK. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J Ginseng Res 2013;37:451-6. https://doi.org/10.5142/jgr.2013.37.451
  47. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20-7. https://doi.org/10.1186/1749-8546-5-20
  48. Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol 2010;80:947-54. https://doi.org/10.1016/j.bcp.2010.06.023
  49. Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, Xu F, Niu W, Wang F, Mao Y, et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 2009;37:2290-8. https://doi.org/10.1124/dmd.109.029819
  50. Dai L, Liu KF, Si CL, Wang LY, Liu J, He J, Lei JD. Ginsenoside nanoparticle: a new green drug delivery system. J Mater Chem B 2016;4:529-38. https://doi.org/10.1039/c5tb02305j
  51. Li LA, Chen XY, Li D, Zhong DF. Identification of 20(S)-protopanaxadiol metabolites in human liver microsomes and human hepatocytes. Drug Metab Dispos 2011;39:472-83. https://doi.org/10.1124/dmd.110.036723
  52. Xiong J, Sun MJ, Guo JX, Huang LS, Wang SJ, Meng BY, Ping QN. Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodiumdependent glucose co-transporter 1. J Pharm Pharmacol 2009;61:381-6. https://doi.org/10.1211/jpp/61.03.0014
  53. Peng M, Li XN, Zhang T, Ding Y, Yi YX, Le J, Yang YJ, Chen XJ. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry. J Pharmaceut Biomed 2016;121:215-24. https://doi.org/10.1016/j.jpba.2016.01.020
  54. Ren HC, Sun JG, Wang GJ, A JY, Xie HT, Zha WB, Yan B, Sun FZ, Hao HP, Gu SH, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS: application of pharmacokinetic study in rats. J Pharm Biomed Anal 2008;48:1476-80. https://doi.org/10.1016/j.jpba.2008.09.045
  55. Li L, Sheng YX, Zhang JL, Wang SS, Guo DA. High-performance liquid chromatographic assay for the active saponins from Panax notoginseng in rat tissues. Biomed Chromatogr 2006;20:327-35. https://doi.org/10.1002/bmc.567
  56. Feng L, Wang L, Hu C, Jiang X. Pharmacokinetics, tissue distribution, metabolism, and excretion of ginsenoside Rg1 in rats. Arch Pharm Res 2010;33:1975-84. https://doi.org/10.1007/s12272-010-1213-2
  57. Hao K, Gong P, Sun SQ, Hao HP, Wang GJ, Dai Y, Chen YC, Liang Y, Xie L, Li FY, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the estrogen-like effect of ginsenoside Rb1 on neural 5-HT in ovariectomized mice. Eur J Pharm Sci 2011;44:117-26. https://doi.org/10.1016/j.ejps.2011.06.014
  58. Toutain PL, Bousquet-Melou A. Volumes of distribution. J Vet Pharmacol Ther 2004;27:441-53. https://doi.org/10.1111/j.1365-2885.2004.00602.x
  59. Gu Y, Wang G, Sun J, Jia Y, Xu M, Wang W. In vitro assessment of plasma protein binding of 20(R)-ginsenoside Rh2 by equilibrium dialysis and LC-MS analysis: a case of species differences. Biol Pharm Bull 2006;29:951-6. https://doi.org/10.1248/bpb.29.951
  60. Zeng MF, Pan LM, Qi SM, Cao YT, Zhu HX, Guo LW, Zhou J. Systematic review of recent advances in pharmacokinetics of four classical Chinese medicines used for the treatment of cerebrovascular disease. Fitoterapia 2013;88:50-75. https://doi.org/10.1016/j.fitote.2013.04.006
  61. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065
  62. Yang L, Xu SJ, Liu CJ, Su ZJ. In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 2009;395:1441-51. https://doi.org/10.1007/s00216-009-3121-1
  63. Yang L, Deng Y, Xu S, Zeng X. In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J Chromatogr B Analyt Technol Biomed Life Sci 2007;854:77-84. https://doi.org/10.1016/j.jchromb.2007.04.014
  64. Hao H, Lai L, Zheng C, Wang Q, Yu G, Zhou X, Wu L, Gong P, Wang G. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship. Drug Metab Dispos 2010;38:1731-9. https://doi.org/10.1124/dmd.110.033845
  65. He C, Feng R, Sun Y, Chu S, Chen J, Ma C, Fu J, Zhao Z, Huang M, Shou J, et al. Simultaneous quantification of ginsenoside Rg1 and its metabolites by HPLCMS/MS: Rg1 excretion in rat bile, urine and feces. Acta Pharm Sin B 2016;6:593-9. https://doi.org/10.1016/j.apsb.2016.05.001
  66. Qian T, Cai Z, Wong RN, Mak NK, Jiang ZH. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci 2005;816:223-32. https://doi.org/10.1016/j.jchromb.2004.11.036
  67. Toutain PL, Bousquet-Melou A. Plasma clearance. J Vet Pharmacol Ther 2004;27:415-25. https://doi.org/10.1111/j.1365-2885.2004.00605.x

Cited by

  1. Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Hu vol.24, pp.14, 2019, https://doi.org/10.3390/molecules24142618
  2. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2019, https://doi.org/10.1007/s12272-019-01184-3
  3. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives vol.104, pp.9, 2019, https://doi.org/10.1007/s00253-020-10455-9
  4. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2019, https://doi.org/10.1002/med.21743
  5. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application vol.2021, 2019, https://doi.org/10.1155/2021/6621644
  6. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers vol.30, 2021, https://doi.org/10.1016/j.cjche.2020.11.012
  7. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors vol.93, 2019, https://doi.org/10.1016/j.bbi.2020.12.004
  8. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  9. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide vol.13, pp.7, 2019, https://doi.org/10.3390/pharmaceutics13071022
  10. Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2101.01032
  11. Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164820
  12. Carbon Nanofibers-Based Nanoconfined Liquid Phase Filtration for the Rapid Removal of Chlorinated Pesticides from Ginseng Extracts vol.69, pp.32, 2019, https://doi.org/10.1021/acs.jafc.1c02973
  13. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2019, https://doi.org/10.3390/pharmaceutics13091496
  14. Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations vol.14, pp.10, 2019, https://doi.org/10.3390/ph14100999
  15. Ginsenoside Rg3 Alleviates Aluminum Chloride-Induced Bone Impairment in Rats by Activating the TGF-β1/Smad Signaling Pathway vol.69, pp.43, 2021, https://doi.org/10.1021/acs.jafc.1c04695
  16. Ginsenoside Rg3 Attenuates TNF-α-Induced Damage in Chondrocytes through Regulating SIRT1-Mediated Anti-Apoptotic and Anti-Inflammatory Mechanisms vol.10, pp.12, 2019, https://doi.org/10.3390/antiox10121972
  17. Ginsenoside Rd: A promising natural neuroprotective agent vol.95, 2019, https://doi.org/10.1016/j.phymed.2021.153883