DOI QR코드

DOI QR Code

Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema costatum

해산규조류(Skeletonema costatum)의 개체군 성장률을 이용한 phenanthrene와 zinc undecylenate의 독성평가

  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Yoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 이주욱 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 최훈 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 이윤 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 황운기 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터)
  • Received : 2019.09.02
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

We evaluated the toxic effects of phenanthrene (PHE) and zinc undecylenate (ZU) on the population growth rate (r) of the marine diatom, Skeletonema costatum. The r of S. costatum was determined after 96 hrs of exposure to PHE (0, 25, 50, 100, 200 and 300 mg L-1) and ZU (0, 5, 10, 15, 20 and 25 mg L-1). The results showed that r in the control (the absence of PHE and ZU) was greater than 0.04, while r in the treatment groups decreased with increasing PHE and ZU concentrations. PHE and ZU were shown to reduce r in a dose-dependent manner, with significant decreases occurring at concentrations above 50 and 10 mg L-1, respectively. The EC50 values of r in PHE and ZU exposure were 136.13 and 16.95 mg L-1, respectively. The no observed effect concentrations (NOEC) were 25 and 5 mg L-1, and the lowest observed effect concentrations (LOEC) were 50 and 10 mg L-1. These results indicated that concentrations of greater than 50 mg L-1 of PHE and 10 mg L-1 of ZU in marine ecosystems induced a toxic effect on the r of S. costatum. These results can serve as useful baseline data for the establishment of safety concentrations of PHE and ZU in marine ecosystems.

해산규조류(Skeletonema cosatatum)의 개체군성장률(r)을 사용하여 연안 유기오염물질인 phenanthrene (PHE)과 zinc undecylenate (ZU)의 독성평가를 실시하였다. S. costatum을 PHE(0, 25, 50, 100, 200, 300 mg L-1)와 ZU(0, 5, 10, 15, 20, 25 mg L-1)에 각각 96시간 노출한 이후에 r을 산출하였고, 대조구의 r은 0.04보다 높아 시험기준에 적합하였다. S. costatum의 r은 PHE 50, ZU 10mg L-1 이상의 농도에서 대조구 대비 유의하게 감소하기 시작해 PHE와 ZU의 농도가 증가할수록 감소되는 농도의존성을 나타냈으며, 최고농도인 300과 25mg L-1 농도에서는 r이 나타나지 않았다. PHE와 ZU에 노출된 S. costatum r의 반수영향농도(EC50)은 136.13, 16.95 mg L-1, 무영향농도(NOEC)는 25, 5 mg L-1, 최소영향농도(LOEC)는 50, 10 mg L-1로 나타났다. 본 연구결과, 해양생태계 내에서 S. costatum의 r은 PHE 50 mg -1, ZU 10 mg L-1 이상의 농도에서 독성영향으로 감소할 것으로 판단되며, PHE와 ZU의 기준농도 설정을 위한 기초자료로 유용하게 사용될 것이다.

Keywords

References

  1. Achten C and T Hofmann. 2009. Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination. Sci. Total Environ. 407:2461-2473. https://doi.org/10.1016/j.scitotenv.2008.12.008
  2. Altenburger R, H Walter and M Grote. 2004. What contributes to the combined effect of a complex mixture? Environ. Sci. Technol. 38:6353-6362. https://doi.org/10.1021/es049528k
  3. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Parmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001
  4. Antizar-Ladislao B. 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT) -contaminated marine environment. A review. Environ. Int. 34:292-308. https://doi.org/10.1016/j.envint.2007.09.005
  5. Baun A, SN Sorensen, RF Rasmussen, NB Hartmann and CB Koch. 2008. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano -$C_{60}$. Aquat. Toxicol. 86:379-387. https://doi.org/10.1016/j.aquatox.2007.11.019
  6. Cedergreen N. 2014. Quantifying synergy: a systematicreview of mixture toxicity studies within environmental toxicology. PloS one 9:e96580. https://doi.org/10.1371/journal.pone.0096580
  7. Chan SMN, T Luan, MH Wong and NFY Tam. 2006. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ. Toxicol. Chem. 25:1772-1779. https://doi.org/10.1897/05-354R.1
  8. Chiapusio G, S Pujol, ML Toussaint, PM Badot and P Binet. 2007. Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant Soil 294:103-112. https://doi.org/10.1007/s11104-007-9234-4
  9. Fernandez -Alba AR, MD Hernando, L Piedra and Y Chisti. 2002. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta 456:303-312. https://doi.org/10.1016/S0003-2670(02)00037-5
  10. Hong YW, DX Yuan, QM Lin and TL Yang. 2008. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar. Pollut. Bull. 56:1400-1405. https://doi.org/10.1016/j.marpolbul.2008.05.003
  11. Huang L, C Wang, Y Zhang, M Wu and Z Zuo. 2013. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J. Hazard. Mater. 261:172-180. https://doi.org/10.1016/j.jhazmat.2013.07.030
  12. Hwang UK, HM Ryu, JW Lee, SM Lee and HS Kang. 2014. Toxic effects of heavy metal (Cd, Cu, Zn) on population growth rate of the marine diatom (Skeletonema costatum). Korean. J. Environ. Biol. 32:243-249. https://doi.org/10.11626/KJEB.2014.32.3.243
  13. Hwang UK, H Choi, JS Jang, S Heo and JW Lee. 2017. Toxicity assessment of phenanthrene using the survival and population growth rate of the marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 35:573-580. https://doi.org/10.11626/KJEB.2017.35.4.573
  14. Hwang UK, H Choi, YH Park, NY Park, SJ Jang, SM Lee, YS Choi, JY Yang and JW Lee. 2018. Toxicity assessment of antifouling agent using the survival and population growth rate of marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 36:392-399. https://doi.org/10.11626/KJEB.2018.36.3.392
  15. Jacobson AH and GL Willingham. 2000. Sea - nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258:103-110. https://doi.org/10.1016/S0048-9697(00)00511-8
  16. Jung SM 2012. Development of new antifouling systems based on nontoxic self - polishing copolymer coatings. Pukyong National University.
  17. Jung SM, JS Bae, SG Kang, JS Son, JH Jeon, HJ Lee, JY Jeon, M Sidharthan, SH Ryu and HW Shin. 2017. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124:811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047
  18. Kim M, MC Kennicutt II and Y Qian. 2008. Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shipping waterway. Sci. Total Environ. 389:367-377. https://doi.org/10.1016/j.scitotenv.2007.08.045
  19. Kim SK, JR Oh, WJ Shim, DH Lee, UH Yim, SH Hong, YB Shin and DS Lee. 2002. Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. Mar. Pollut. Bull. 45:268-279. https://doi.org/10.1016/S0025-326X(01)00279-X
  20. Lam NH, HH Jeong, SD Kang, DJ Kim, MJ Ju, T Horiguchi and HS Cho. 2017. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment. Mar. Pollut. Bull. 121:302-312. https://doi.org/10.1016/j.marpolbul.2017.06.026
  21. Lananan F, A Jusoh, N Ali, SS Lam and A Endut. 2013. Effect of Conway medium and f/2 medium on the growth of six genera of south China Sea marine microalgae. Bioresour. Technol. 141:75-82. https://doi.org/10.1016/j.biortech.2013.03.006
  22. Lansdown ABG. 1991. Interspecies variations in response to topical application of selected zinc compounds. Food Chem. Toxicol. 29:57-64. https://doi.org/10.1016/0278-6915(91)90063-D
  23. Lee JW, HM Ryu, S Heo, SJ Jang, KW Lee and UK Hwang. 2017. Effect of heavy metals (As, Cr, Pb) on the population growth rates of marine diatom, Skeletonema costatum. JMLS 2:20-26.
  24. Lee MR, UJ Kim, IS Lee, MC Choi and JE Oh. 2015. Assessment of organotin and tin - free antifouling paints contamination in the Korean coastal area. Mar. Pollut. Bull. 99:157-165. https://doi.org/10.1016/j.marpolbul.2015.07.038
  25. Lee SG, JW Chung, HS Won, DS Lee and YW Lee. 2011. Analysis of antifouling agents after regulation of tributyltin compounds in Korea. J. Hazard. Mater. 185:1318-1325. https://doi.org/10.1016/j.jhazmat.2010.10.048
  26. Lin MC, HL Wu, HS Kou and SM Wu. 2006. Simple fluorimetric liquid chromatographic method for the analysis of undecylenic acid and zinc undecylenate in pharmaceutical preparations. J. Chromatogr. A 1119:264-269. https://doi.org/10.1016/j.chroma.2005.10.058
  27. Martinez -Llado X, O Gibert, V Marti, S Diez, J Romo, JM Bayona and J de Pablo. 2007. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities. Environ. Pollut. 149:104-113. https://doi.org/10.1016/j.envpol.2006.11.020
  28. MOF. 2018. Marine Environment Standard Method, Part 3 Marine Organism Standard Method. Ministary of Oceans and Fisheries, Korea. pp. 115-123.
  29. Nakanishi T. 2007. Potnetial toxicity of organotin compounds via nuclear receptor signaling in mammals. J. Health Sci. 53:1-9. https://doi.org/10.1248/jhs.53.1
  30. Okumura Y, J Koyama, H Takaku and H Satoh. 2001. Influence of organic solvents on the growth of marine microalgae. Environ. Contam. Toxicol. 41:123-128. https://doi.org/10.1007/s002440010229
  31. Oliveira IB, KJ Groh, R Schonenberger, C Barroso, KV Thomas and MJF Suter. 2017. Toxicity of emerging antifouling biocides to non- target freshwater organisms from three trophic levels. Aquat. Toxicol. 191:164-174. https://doi.org/10.1016/j.aquatox.2017.07.019
  32. Onduka T, K Mochida, H Harino, K Ito, A Kakuno and K Fujii. 2010. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Arch. Environ. Contam. Toxicol. 58:991-997. https://doi.org/10.1007/s00244-009-9430-8
  33. Reddy MS, S Basha, HV Joshi and G Ramachandraiah. 2005 Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay. India. Chemosphere 61:1587-1593. https://doi.org/10.1016/j.chemosphere.2005.04.093
  34. Ribeiro J, T Silva, JGM Filho and D Flores. 2012. Polycyclic aromatic hydrocarbons (PAHs) in burning and non - burning coal waste piles. J. Hazard. Mater. 199:105-110. https://doi.org/10.1016/j.jhazmat.2011.10.076
  35. Sasaki JC, J Arey, DA Eastmond, KK Parks and AJ Grosovsky. 1997. Genotoxicity induced in human lymphoblasts by atmospheric reaction products of naphthalene and phenanthrene. Mutat. Res. 393:23-35. https://doi.org/10.1016/S1383-5718(97)00083-1
  36. Schafer S and A Kohle. 2009. Gonadal lesions of female sea urchin (Psammechinus miliaris) after exposure to the polycyclic aromatic hydrocarbon phenanthrene. Mar. Environ. Res. 68:128-136. https://doi.org/10.1016/j.marenvres.2009.05.001
  37. Shin KH and KW Kim. 2003. Enhanced bioremediation of phenanthrene using biosurfactant. Econ. Environ. Geol. 36:375-380.
  38. Shin HW, SG Kang, JS Son, JH Jeon, HJ Lee, SM Jung and CM Smith. 2015. Evaluation of antifouling system of new antifouling agents using spores of the green alga, Ulva pertusa and diatom, Nitzschia pungens. Korean J. Environ. Ecol. 29:736-742. https://doi.org/10.13047/KJEE.2015.29.5.736
  39. Song YC, JH Woo, SH Park and IS Kim. 2005. A study on the treatment of antifouling paint waste from shipyard. Mar. Pollut. Bull. 51:1048-1053. https://doi.org/10.1016/j.marpolbul.2005.02.017
  40. Soroldoni S, F Abreu, IB Castro, FA Duarte and GLL Pinho. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J. Hazard. Mater. 330:76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001
  41. Stronkhorst J and B van Hattum. 2003. Contaminants of concern in Dutch marine harbor sediments. Arch. Environ. Contam. Toxicol. 45:306-316. https://doi.org/10.1007/s00244-003-0191-5
  42. Tam NFY, AMY Chong and YS Wong. 2002. Removal of tributyltin (TBT) by live and dead microalgal cells. Mar. Pollut. Bull. 45:362-371. https://doi.org/10.1016/S0025-326X(02)00184-4
  43. Turcotte D, P Akhtar, M Bowerman, Y Kiparissis, RS Brown and PV Hodson. 2011. Measuring the toxicity of alkylphenanthrenes to early life stages of medaka (Oryzias latipes) using partition - controlled delivery. Environ. Toxicol. Chem. 30:487-495. https://doi.org/10.1002/etc.404
  44. Wu S, X Xu, S Zhao, F Shen and J Chen. 2013. Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): An ecotoxicoproteomics approach. Chemosphere 93:963-971. https://doi.org/10.1016/j.chemosphere.2013.05.062
  45. Yim UH, SH Hong and WJ Shim. 2007. Distribution and characteristics of PAHs in sediments from the marine environment of Korea. Chemosphere 68:85-92. https://doi.org/10.1016/j.chemosphere.2006.12.032
  46. Zecher K, VP Aitha, K Heuer, K Roland, M Fiedel and B Philipp. 2018. A multi -step approach for testing non - toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity. J. Microbiol. Methods 146:104-114. https://doi.org/10.1016/j.mimet.2018.02.009
  47. Zindler F, B Glomstad, D Altin, J Liu, BM Jenssen and AM Booth. 2016. Phenanthrene bioavailability and toxicity to Daphnia magna in the presence of carbon nanotubes with different physicochemical properties. Environ. Sci. Technol. 50:12446-12454. https://doi.org/10.1021/acs.est.6b03228