DOI QR코드

DOI QR Code

Induction Heating of Cylinderical MoSi2-based Susceptor

실린더형 MoSi2계 발열체의 유도가열 적용

  • Lee, Sung-Chul (Department of materials science and engineering, Incheon National University) ;
  • Kim, Yo Han (Department of materials science and engineering, Incheon National University) ;
  • Myung, Jae-ha (Department of materials science and engineering, Incheon National University) ;
  • Kim, Bae-Yeon (Department of materials science and engineering, Incheon National University)
  • 이성철 (인천대학교 신소재공학과) ;
  • 김요한 (인천대학교 신소재공학과) ;
  • 명재하 (인천대학교 신소재공학과) ;
  • 김배연 (인천대학교 신소재공학과)
  • Received : 2019.02.28
  • Accepted : 2019.04.10
  • Published : 2019.08.01

Abstract

In present study, the cylindrical susceptor by the slip casting method was designed to apply high-temperature induction heating by using $(Mo,W)Si_2$ ceramics. $MoSi_2$-based materials were synthesized by SHS (Self-propagating High-temperature Synthesis) method. The phase and crystal structure of $MoSi_2$-based materials were confirmed by XRD analysis. The shape of cylindrical mold was synthesized for various thickness by using the slip casting method. Finally, the susceptor for induction heating was processed by sintering and heat treatment to form $SiO_2$ layer, which was confirmed on the surface of susceptor by SEM/EDS analysis. To evaluate the heating performance of $(Mo,W)Si_2$ cylinder susceptor, we measured the maximum surface temperature and heating rate in comparison with the rod heating element under constantly applied power. The induction heating of the $(Mo,W)Si_2$ cylinder showed excellent heating performance, reaches the maximum temperature of $1457^{\circ}C$, with the average heating rate of $19^{\circ}C/s$ at 2 kW

본 연구에서는 슬립캐스팅 성형법을 이용하여 실린더형 $MoSi_2$계 세라믹 서스셉터를 개발하여 고온 유도가열에 적용시켰다. $MoSi_2$계 소재는 SHS법(Self-propagating High-temperature Synthesis)으로 합성하였고 XRD 분석을 통해 합성된 상과 결정구조를 확인하였다. 합성된 소재로 실린더 성형체를 제작하기 위해 슬립캐스팅을 진행하였고 슬립의 고형분 함량 및 유지시간을 조절하여 실린더 성형체의 두께를 제어하였다. 최종적으로 성형체 소결을 통해 유도가열 발열체를 제작하였고 열처리과정 중 표면에 형성된 $SiO_2$층은 SEM/EDS 분석을 통해 확인하였다. 서스셉터로서의 가열성능을 평가하기 위해 유도가열기로 일정한 출력을 인가하였을 때 $(Mo,W)Si_2$ 실린더 서스셉터의 표면온도를 측정하여 출력 2 kW를 인가하였을 때 발열특성을 분석하였으며, 서스셉터 표면의 최고 온도는 $1457^{\circ}C$, 평균 승온속도는 $19^{\circ}C/s$로 우수한 가열 특성을 나타냈다.

Keywords

HHGHHL_2019_v57n4_553_f0001.png 이미지

Fig. 1. Heating Cu coil and cylinder susceptor for induction heating system.

HHGHHL_2019_v57n4_553_f0002.png 이미지

Fig. 2. X-ray Diffraction Patterns and lattice structure of synthesized samples. (a) XRD patterns, (b) diffraction peaks at (002), (c) (002) plane spacing and (d) Tetragonal crystal structure of MoSi2.

HHGHHL_2019_v57n4_553_f0003.png 이미지

Fig. 3. Thickness change of (Mo, W)Si2 cylinder by slip casting process on different dwelling time. (a) Thickness square of cylinder with different solid contents of slurry and (b) Thickness of cylinder using (Mo, W)Si2 contents of 80 wt% slip before/after sintering.

HHGHHL_2019_v57n4_553_f0004.png 이미지

Fig. 4. Microstructures of (Mo, W)Si2 cylinder susceptor after sintering. (a) The surface and cross section of near surface, (b) EDS analysis at surface, (c) cross section and (d) polished cross section for porosity measurement by using image J software program.

HHGHHL_2019_v57n4_553_f0005.png 이미지

Fig. 5. Induction heating of (Mo, W)Si2 Φ 12 mm rod. (a) The surface temperatures of (Mo, W)Si2 rod in 2 kW and (b) various power.

HHGHHL_2019_v57n4_553_f0006.png 이미지

Fig. 6. Induction heating of (Mo, W)Si2 cylinder and temperature comparison with other rod products. (a) The surface temperatures of (Mo, W)Si2 cylinder in (b) various power.

Table 1. Crystal information of the MoSi2-based materials with different cations

HHGHHL_2019_v57n4_553_t0001.png 이미지

Table 2. Maximum temperature and heating rate of (Mo, W)Si2 cylinder and rod with various power

HHGHHL_2019_v57n4_553_t0002.png 이미지

References

  1. Yoo, S. B., Lee, D. Y. and Hyun, D. S., "Characteristic and System Tends of Inverter for Induction Heating," The Korean Institute of Electrical Engineers, 50(2), 21-29(2001).
  2. Jung, Y. C., Park B. W. and Jo, K. Y., "Induction Heating Technology of Home Appliances", The Korean Institute of Electrical Engineers, 50(2), 15-20(2001).
  3. Park, H. S. and Shin, K. S., "Evolution of Microstructural Change and Transformation in Mechanically Alloyed $MoSi_2$," Jurnal of the Korean Institute of Metals and Materials, 33(6), 750-756(1995).
  4. Panneerselvam, M., Agrawal, A. and Rao, K. J., "Microwave Sintering of $MoSi_2$-SiC Composites," Materials Science and Engineering A, 356(1-2), 267-273(2003). https://doi.org/10.1016/S0921-5093(03)00140-0
  5. Lee, S. J., Jang, Y. S., Kim, I. S., Park, H. C. and Oh, K. D., "Synthesis and Sintering of $MoSi_2$ by SHS Process," Journal of the Korean Ceramic Society, 32, 1085-1091(1995).
  6. Song, I. H., Yun, J. Y. and Kim, H. D., "Fabrication of Porous $MoSi_2$ Material for Heating Element through Self-propagating High Temperature Synthesis Processm," Journal of the Korean Ceramic Society, 41(1), 62(2004). https://doi.org/10.4191/KCERS.2004.41.1.062
  7. Kim, W. B., Shim, K. J., Jang, D. K. and Suh, C. Y., "Fabrication of $MoSi_2$ Heating Elements, " Korean Journal of Materials Research, 7(9), 763-771(1997).
  8. Hampton, J. H. D., Savage, S. B. and Drew, R. A., "Experimental Analysis and Modeling of Slip Casting," Journal of the American Ceramic Society, 71(12), 1040-1045(1988). https://doi.org/10.1111/j.1151-2916.1988.tb05789.x
  9. Zakeri, M., Yazdani-Rad, R., Enayati, M. H. and Rahimipour, M. R., "Synthesis of Nanocrystalline $MoSi_2$ by Mechanical Alloying," Journal of Alloys and Compounds, 403(1-2), 258-261(2005). https://doi.org/10.1016/j.jallcom.2005.06.003
  10. Zhang, S. and Munir, Z. A., "Synthesis of Molybdenum Silicides by the Self-propagating Combustion Method," Journal of Materials Science, 26(13), 3685-3688(1991). https://doi.org/10.1007/BF00557164
  11. Merzhanov, A. G., "Self-propagating High-temperature Synthesis: Twenty Years of Search and Findings," Combustion and Plasma Synthesis of High-Temperature Materials, 1-53(1990).
  12. Tiller, F. M. and Tsai, C. D., "Theory of Filtration of Ceramics: I, Slip Casting," Journal of the American Ceramic Society, 69(12), 882-887(1986). https://doi.org/10.1111/j.1151-2916.1986.tb07388.x
  13. Adcock, D. S. and McDowall, I. C., "The Mechanism of Filter Pressing and Slip Casting," Journal of the American Ceramic Society, 40(10), 355-360(1957). https://doi.org/10.1111/j.1151-2916.1957.tb12552.x
  14. Hoffmann, M. J., Nagel, A., Greil, P. and Petzow, G., "Slip Casting of SiC-Whisker-Reinforced $Si_3N_4$," Journal of the American Ceramic Society, 72(5), 765-769(1989). https://doi.org/10.1111/j.1151-2916.1989.tb06214.x
  15. Hansson, K., Halvarsson, M., Tang, J. E., Pompe, R., Sundberg, M. and Svensson, J. E., "Oxidation Behaviour of a $MoSi_2$-based Composite in Different Atmospheres in the Low Temperature Range $(400-550 ^{\circ}C)$," Journal of the European Ceramic Society, 24(13), 3559-3573(2004). https://doi.org/10.1016/j.jeurceramsoc.2003.11.024
  16. Lee, D. W., Lee, S. H., Kim, Y. N., Lee, S. C., Koo, S. M. and Oh, J. M., "Degradation Mechanism of $Mo_xW_{1-x}Si_2$ Heating Elements Fabricated by SHS Process," J. Korean Inst. Electr. Electron. Mater. Eng., 30(10), 631-636(2017). https://doi.org/10.4313/JKEM.2017.30.10.631