DOI QR코드

DOI QR Code

Performance analysis of automatic target tracking algorithms based on analysis of sea trial data in diver detection sonar

수영자 탐지 소나에서의 해상실험 데이터 분석 기반 자동 표적 추적 알고리즘 성능 분석

  • Received : 2019.05.15
  • Accepted : 2019.07.01
  • Published : 2019.07.31

Abstract

In this paper, we discussed automatic target tracking algorithms for diver detection sonar that observes penetration forces of coastal military installations and major infrastructures. First of all, we analyzed sea trial data in diver detection sonar and composed automatic target tracking algorithms based on track existence probability as track quality measure in clutter environment. In particular, these are presented track management algorithms which include track initiation, confirmation, termination, merging and target tracking algorithms which include single target tracking IPDAF (Integrated Probabilistic Data Association Filter) and multitarget tracking LMIPDAF (Linear Multi-target Integrated Probabilistic Data Association Filter). And we analyzed performances of automatic target tracking algorithms using sea trial data and monte carlo simulation data.

본 논문은 연안 군사시설 및 주요 기반시설에 대한 침투세력을 감시하는 수영자 탐지 소나에서의 자동 표적추적 알고리즘을 다루었다. 이를 위해 수영자 탐지 소나에서의 해상실험 데이터를 분석하였고, 클러터 환경에서 자동표적 추적을 위한 트랙평가수단으로서 트랙존재확률 기반의 알고리즘을 적용하여 시스템을 구성하였다. 특히 트랙초기화, 확정, 제거, 합병 등의 트랙관리 알고리즘과 단일표적추적 IPDAF(Integrated Probabilistic Data Association Filter), 다중표적추적 LMIPDAF(Linear Multi-target Integrated Probabilistic Data Association Filter) 등의 표적추적 알고리즘을 제시하였으며, 해상실험 데이터 및 몬테카를로 모의실험 데이터를 이용하여 성능을 분석하였다.

Keywords

GOHHBH_2019_v38n4_415_f0001.png 이미지

Fig. 1. Detection results by thresholds.

GOHHBH_2019_v38n4_415_f0002.png 이미지

Fig. 2. Detection results by false detection elimination algorithms.

GOHHBH_2019_v38n4_415_f0003.png 이미지

Fig. 3. Diagram of automatic target tracking algorithm based on track existence probability in diver detection sonar.

GOHHBH_2019_v38n4_415_f0004.png 이미지

Fig. 4. Relationship map of track state.

GOHHBH_2019_v38n4_415_f0005.png 이미지

Fig. 5. A example of automatic target tracking.

GOHHBH_2019_v38n4_415_f0006.png 이미지

Fig. 6. Situation of multi-target tracking.

GOHHBH_2019_v38n4_415_f0007.png 이미지

Fig. 7. Sea trial data.

GOHHBH_2019_v38n4_415_f0008.png 이미지

Fig. 8. The number of detection data.

GOHHBH_2019_v38n4_415_f0009.png 이미지

Fig. 9. Confirmed tracks.

GOHHBH_2019_v38n4_415_f0010.png 이미지

Fig. 10. Confirmed true track.

GOHHBH_2019_v38n4_415_f0011.png 이미지

Fig. 11. The number of tentative and confirmed tracks.

GOHHBH_2019_v38n4_415_f0012.png 이미지

Fig. 12. Simulation scenario.

GOHHBH_2019_v38n4_415_f0013.png 이미지

Fig. 13. IPDAF single simulation results.

GOHHBH_2019_v38n4_415_f0014.png 이미지

Fig. 14. LMIPDAF single simulation results.

GOHHBH_2019_v38n4_415_f0015.png 이미지

Fig. 15. Confirmed true track rate.

GOHHBH_2019_v38n4_415_f0016.png 이미지

Fig. 16. Position RMSE at x - ­axis.

GOHHBH_2019_v38n4_415_f0017.png 이미지

Fig. 17. Position RMSE at y - ­axis.

Table 1. Speed for detection data of 2 scans.

GOHHBH_2019_v38n4_415_t0001.png 이미지

Table 2. Simulation conditions.

GOHHBH_2019_v38n4_415_t0002.png 이미지

References

  1. X. R. Li and Y. Bar-Shalom, "Tracking in clutter with nearest neighbor filters : Analysis and performance," IEEE Trans. on Aerospace and Electronic Systems, 32, 995-2020 (1996). https://doi.org/10.1109/7.532259
  2. X. R. Li and Y. Bar-Shalom, "Theoretical analysis and performance prediction of tracking in clutter with strongest neighbor filters," Proc. the 34th Conference on Decision and Control, 2758-2763 (1995).
  3. T. Kirubarajan and Y. Bar-Shalom, "Probabilistic data association techniques for target tracking in clutter," Proc. The IEEE 92, 536-557 (2004). https://doi.org/10.1109/JPROC.2003.823149
  4. Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Systems Magazine, 29, 82-100 (2009). https://doi.org/10.1109/MCS.2009.934469
  5. D. Musicki, R. Evans, and S. Stankovic, "Integrated Probabilistic Data Association (IPDA)," Proc. the 31st Conference on Decision and Control, 3796-3798 (1992).
  6. D. Musicki, R. Evans, and S. Stankovic, "Integrated probabilistic data association," IEEE Trans. on Automatic Control, 39, 1237-1241 (1994). https://doi.org/10.1109/9.293185
  7. D. Musicki and R. Evans, "Joint integrated probabilistic data association : JIPDA," IEEE Trans. on Aerospace and Electronic Systems, 40, 1093-1099 (2004). https://doi.org/10.1109/TAES.2004.1337482
  8. D. Musicki and B. La Scala, "Multi-target tracking in clutter without measurement assignment," IEEE Trans. on Aerospace and Electronic Systems, 44, 877-896 (2008). https://doi.org/10.1109/TAES.2008.4655350
  9. D. Musicki, T. L. Song, and H. H. Lee, "Linear multitarget finite resolution tracking in clutter," IEEE Trans. on Aerospace and Electronic Systems, 50, 1798-1812 (2014). https://doi.org/10.1109/TAES.2014.120257
  10. T. N. Tran, K. Drab, and M. Daszykowski, "Revised DBSCAN algorithm to cluster data with dense adjacent clusters," Chemometrics and Intelligent Laboratory Systems, 120, 92-96 (2013). https://doi.org/10.1016/j.chemolab.2012.11.006
  11. M. E. Smith and P. K. Varshney, "Intelligent CFAR processor based on data variability," IEEE Trans. on Aerospace and Electronic Systems, 36, 837-847 (2000). https://doi.org/10.1109/7.869503