DOI QR코드

DOI QR Code

Haptic recognition of the palm using ultrasound radiation force and its application

초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용

  • 김선애 (대진대학교 전기 및 전자공학부) ;
  • 김태양 (대진대학교 전기 및 전자공학부) ;
  • 이열음 (대진대학교 전기 및 전자공학부) ;
  • 이수연 (대진대학교 전기 및 전자공학부) ;
  • 정목근 (대진대학교 전기 및 전자공학부) ;
  • 권성재 (대진대학교 휴먼IT융합학부)
  • Received : 2019.04.29
  • Accepted : 2019.07.01
  • Published : 2019.07.31

Abstract

A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

고출력의 초음파는 매질을 진행하면 음향 흐름과 음향 방사힘을 만들어낸다. 공기를 매질로 하는 3차원 공간상에 음향 방사힘을 발생시키면 입체적인 촉감을 형성할 수 있으므로 공간적인 정보를 직접 피부에 촉각으로 전달할 수 있다. 본 논문은 40 kHz의 작은 초음파 송신자 154개를 묶어 오목한 형태로 배열시켜서 초음파를 송신하여 집속초점에서 음향 방사힘을 발생시켰다. 초음파 음장의 초점의 근처에서 음향 방사힘에 의한 촉각을 확인하였다. 촉각 감도를 올리기 위하여 송신 초음파를 60 Hz의 구형파로 진폭 변조를 하였다. 초음파 촉각의 응용으로 음향 방사힘이 형성되는 허공에 촉각이 감지되는 영역을 형성시켜서, 손의 위치를 지정하는 지시자로 사용하였다. 촉각이 감지되는 초점위치에 있는 손의 모양을 영상 입력으로 받아서 손가락의 개수를 기계에 피드백하는 시스템을 구현함으로써 초음파를 이용한 촉각의 유용성을 확인하였다.

Keywords

GOHHBH_2019_v38n4_467_f0001.png 이미지

Fig. 1. The overall system architecture.

GOHHBH_2019_v38n4_467_f0002.png 이미지

Fig. 2. The spatial field distribution of a single ultrasound transmit element.

GOHHBH_2019_v38n4_467_f0003.png 이미지

Fig. 3. The spatial field distribution of a concave ultrasound transmit module of diameter 24 cm.

GOHHBH_2019_v38n4_467_f0004.png 이미지

Fig. 4. The axial field distribution of a concave ultrasound transmit module.

GOHHBH_2019_v38n4_467_f0005.png 이미지

Fig. 5. The lateral field distribution of a concave ultrasound transmit module at focal depth.

GOHHBH_2019_v38n4_467_f0006.png 이미지

Fig. 6. Photograph of the concave ultrasound transmit module consisting of 154 ultrasound transmit elements connected in parallel, where a camera and an LED light source are placed in the center.

GOHHBH_2019_v38n4_467_f0007.png 이미지

Fig. 7. The paper is shown to be pushed upward by acoustic streaming.

GOHHBH_2019_v38n4_467_f0008.png 이미지

Fig. 8. Comparison of the relative sensitivity of the tactile sensation as a function of the modulation frequency with the dashed-line graph representing the curve-fitted result.

GOHHBH_2019_v38n4_467_f0009.png 이미지

Fig. 9. The left, middle, right images represent the process of finding the palm center, and are, respectively, the palm, its binary image showing the boundary, and the red dot marking its center of mass obtained using the distance transformation matrix, along with a circle drawn around the center.

GOHHBH_2019_v38n4_467_f0010.png 이미지

Fig. 10. Monitor screenshot where three fingers are recognized and the number 3 is displayed.

GOHHBH_2019_v38n4_467_f0011.png 이미지

Fig. 11. Photograph of the entire system.

Table 1. Measurement of weight (mg) as a function of the number of ultrasound transmit elements and depth (cm).

GOHHBH_2019_v38n4_467_t0001.png 이미지

Table 2. Measurement of weight (g) as a function of the number of ultrasound transmit elements at a depth of 20.3 cm.

GOHHBH_2019_v38n4_467_t0002.png 이미지

References

  1. Y. Bar-Cohen and C. Breazeal, "Biologically inspired intelligent robots." Proc. SPIE Smart Structures and Materials Symp., Electroactive Polymer Actuators and Devices (EAPAD) Conf., 5051, 14-20 (2003).
  2. C. Colwell, H. Petrie, D. Kornbrot, A. Hardwick, and S. Furner, "Haptic virtual reality for blind computer users," Proc. Third International ACM Conference on Assistive Technologies, 92-99 (1998).
  3. M. Sreelakshmi and T. D. Subash, "Haptic technology: a comprehensive review on its applications and future prospects," Materials Today: Proc. 4, 4182-4187 (2017).
  4. S. W. Son, K. U. Kyung, G. H. Yang, and D. S. Kwon, "Study of human tactile sensing characteristics using tactile display system", J. ICROS, 11, 451-456 (2005).
  5. J. I. Jung and J. S. Cho, "Design and implementation of real-time haptic display system", J. IEEK. 48-CI, 1-8 (2011).
  6. D. H. Lee, K. W. Noh, S. K. Kang, H. W. Kim, and J. M. Lee, "Tactile navigation system using a haptic device", J. ICROS, 20, 807-814 (2014). https://doi.org/10.5302/J.ICROS.2014.14.9039
  7. B. Banter, "Touch screens and touch surfaces are enriched by haptic force‐feedback," Information Display, 26-30 (2010).
  8. P. Poncet, F. Casset, A. Latour, F. D. D. Santos, S. Pawlak, R. Gwoziecki, A. Devos, P. Emery, and S. Fanget, "Static and dynamic studies of electro-active polymer actuators and integration in a demonstrator," Actuators, 6 (2017).
  9. T. Blankenship, "Tactile feedback solutions using piezoelectric actuators," Application Note, Maxim Integrated Products, (2011).
  10. T. Hoshi, T. Iwamoto, and H. Shinoda, "Non-contact tactile sensation synthesized by ultrasound transducers," Proc. World Haptics 2009 - Third Joint Eurohaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 256-260 (2009).
  11. T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramania, "UltraHaptics: multi-point mid-air haptic feedback for touch surfaces," Proc. 26th ACM Symp. on User Interface Software and Technology, 505-514 (2013).
  12. S. Inoue and H. Shinoda, "A pinchable aerial virtual sphere by acoustic ultrasound stationary wave," Proc. IEEE Haptics Symp., 23-26 (2014).
  13. B. Long, S. A. Seah, T. Carter, and S. Subramanian, "Rendering volumetric haptic shapes in mid-air using ultrasound," Proc. ACM SIGGRAPH Asia 33 (2014).
  14. T. Iwamoto, D. Akaho, and H. Shinoda, "High resolution tactile display using acoustic radiation pressure," Proc. SICE Annual Conf., 2, 1239-1244 (2004).
  15. J. Monnoyer, E. Diaz, C. Bourdin, and M. Wiertlewski, "Ultrasonic friction modulation while pressing induces a tactile feedback," Proc. Int'l Conf. on Human Haptic Sensing and Touch Enabled Computer Applications, 171-179 (2016).
  16. M. L. Palmeri and K. R. Nightingale. "Acoustic radiation force-based elasticity imaging methods," Interface Focus, 1, 553-564 (2011). https://doi.org/10.1098/rsfs.2011.0023
  17. R. T. Beyer, Nonlinear Acoustics (American Institute of Physics, New York, 1974), pp. 234.
  18. P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phys., 62, 671-722 (1999). https://doi.org/10.1088/0034-4885/62/5/201
  19. T. F. Hueter and R. H. Bolt, Sonics: Techniques for the Use of Sound and Ultrasound in Engineering and Science (John Wiley & Sons, New York, 1955), pp. 47.
  20. A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs, N.J., 1983), pp. 203-214.
  21. ISO 9613-1, "Acoustics - Attenuation of sound during propagation outdoors - Part 1: Calculation of the absorption of sound by the atmosphere," 1993.
  22. G. M. Y. Hung, N. W. John, C. Hancock, D. A. Gould, and T. Hoshi, "UltraPulse - Simulating a human arterial pulse with focused airborne ultrasound," Proc. 35th Annual Int'l Conf. of IEEE EMBS, 2511-2514 (2013).
  23. T. Kikuchi, S. Sato, and M. Yoshioka, "Ultrasonic power measurement by the radiation force balance method - Experimental results using burst waves and continuous waves," Japanese J. Applied Physics, 41, 3279-3280 (2002). https://doi.org/10.1143/JJAP.41.3279
  24. K. Jaksukam and S. Umchid, "A primary level ultrasonic power measurement system developed at national institute of metrology, thailand," Int'l J. Applied Biomedical Eng., 4, 24-29 (2011).
  25. S. Umchid and P. Kakanumporn, "Ultrasound power meter with a three axis positioning system for therapeutic applications," Proc. World Congress on Engineering, 2 (2013).
  26. B. Karaboce, "Establishment of ultrasonic power measurements standard at TUBITAK UME and bilateral comparison results," Int'l J. Acoustics and Ultrasonics, I, 13-18 (2018).