DOI QR코드

DOI QR Code

Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process

열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조

  • Hwang, Jeong Yun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Yong-Nam (Material Technology Center, Korea Testing Laboratory) ;
  • Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
  • 황정윤 (연세대학교 신소재공학과) ;
  • 김용남 (한국산업기술시험원 재료기술센터) ;
  • 이규형 (연세대학교 신소재공학과)
  • Received : 2019.06.13
  • Accepted : 2019.06.27
  • Published : 2019.06.30

Abstract

Herein we developed the hot extrusion technology to prepare n-type Bi-Te-Se-based thermoelectric materials with high reliability. Starting ingot was fabricated via melt-solidification process, then pulverized it into powders (${\sim}30{\mu}m$) by using high energy ball milling. By optimization of mold design and temperature-pressure conditions for hot extrusion, dense extrudate of 1.8 mm in diameter with high 00l orientation could be obtained from disc-shape compacted powders (20 mm in diameter). High power factor ${\sim}4.1mW/mK^2$ and enhanced mechanical strength ~50 MPa were simultaneously observed at 300 K.

높은 신뢰성의 n형 Bi-Te-Se계 열전소자 제조를 위한 열간압출 공정을 확립하였다. 용융-응고 공정을 이용하여 Bi-Te-Se 원료잉곳을 합성하였으며, 고에너지 볼밀을 이용하여 평균 ${\sim}30{\mu}m$ 크기의 분말로 분쇄하였다. 일축가압 공정으로 분말을 직경 20 mm의 디스크 형태로 성형한 후 압출용 몰드 설계-제작 및 열간압출 공정 온도와 압력을 제어하여 성형체로부터 00l 방향으로 결정 배향된 지름 1.8 mm의 원통형 고밀도 압출체를 제조하였다. 상온에서 최대 ${\sim}4.1mW/mK^2$의 높은 파워팩터를 나타냈으며, zone melting 공정으로 제조한 상용 열전소재와 비교하여 2배 이상 향상된 기계적 강도 (~50 MPa)를 구현하였다.

Keywords

MOKRBW_2019_v26n2_45_f0001.png 이미지

Fig. 1. Schematic illustration of π-type thermoelectric module.

MOKRBW_2019_v26n2_45_f0002.png 이미지

Fig. 2. Fabrication process of thermoelectric elements from ingot and extrudate.

MOKRBW_2019_v26n2_45_f0003.png 이미지

Fig. 3. Design of hot extrusion process.

MOKRBW_2019_v26n2_45_f0004.png 이미지

Fig. 4. XRD patterns for Cu0.03Bi2Te2.7Se0.3 (a) powders and (b) extrudate.

MOKRBW_2019_v26n2_45_f0005.png 이미지

Fig. 5. SEM images for the fractured surfaces of Cu0.03Bi2Te2.7Se0.3 extrudate; (a) perpendicular to the extrusion direction and (b) parallel to the extrusion direction.

MOKRBW_2019_v26n2_45_f0006.png 이미지

Fig. 6. Temperature dependences of (a) electrical conductivity and Seebeck coefficient and (b) power factor for Cu0.03Bi2Te2.7Se0.3 extrudate.

References

  1. A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
  2. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials", Nat. Mater., 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
  3. D. H. Park, M. R. Roh, M. Y. Kim, and K. H. Song, "Reaction between Sn-3.5Ag Solder and Thin Film Metallization", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  4. M. Kim, S. I. Kim, H. Cho, H. Mun, H. Kim, J. H. Lim, S. W. Kim, and K. H. Lee, "Cu-incorporation by melt-spinning in n-type $Bi_2Te_{2.7}Se_{0.3}$ alloys for low-temperature power generation", Scripta Mater., 167, 120 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.006
  5. W. S. Kiu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, "Thermoelectric Property Studies on Cu-Doped n-type Cux$Bi_2Te_{2.7}Se_{0.3}$ Nanocomposites", Adv. Energy Mater., 1, 577 (2011). https://doi.org/10.1002/aenm.201100149
  6. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, "Thermoelectric property studies on Cu-doped n-type Cux$Bi_2Te_{2.7}Se_{0.3}$ nanocomposites", Adv. Energy Mater., 1(4), 577 (2011). https://doi.org/10.1002/aenm.201100149
  7. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type $(Bi,Sb)_2Te_3$ fabricated by spark plasma sintering", Scripta Mater., 52, 347 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.038
  8. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  9. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, "Experimental studies on anisotropic thermoelectric properties and structures of n-Type $Bi_2Te_{2.7}Se_{0.3}$", Nano Lett., 10(9), 3373 (2010). https://doi.org/10.1021/nl101156v
  10. S. M. Choi, K. H. Lee, Y. S. Lim, W. S. Seo, and S. Lee, "Effects of doping on the positional uniformity of the thermoelectric properties of n-type $Bi_2Te_{2.7}Se_{0.3}$ polycrystalline bulks", J. Kor. Phys. Soc., 68(1), 17 (2016). https://doi.org/10.3938/jkps.68.17

Cited by

  1. 반도체 재료의 격자열전도도 분석 vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.061