DOI QR코드

DOI QR Code

A Study on Optical Characteristic of Plasmonic Nanostructure Depending on Height of Deposited Silver

플라즈모닉 구조를 위한 은 증착 두께에 따른 광 특성 해석 연구

  • Kim, J.H. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jeong, M.Y. (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김준현 (부산대학교 인지메카트로닉스공학과) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2019.06.10
  • Accepted : 2019.06.28
  • Published : 2019.06.30

Abstract

Surface plasmon effect was considered importantly because of the enhancement of optical signals. It is important to detect weak optical signal in neuroscience and bio technology due to detect weaker image or signal. The height of silver can change the optical characteristic of plasmonic nano structure including transmittance and reflectance. In this paper, the optical characteristic of plasmonic nano structure were confirmed by the FDTD analysis method depending on the silver height and it was confirmed that energy was concentrated at the center of nano structure, and high far-field gain and current density in particular wavelength coule be obtained.

최근 표면 플라즈몬 효과는 광 신호 향상에 중요하게 대두되고 있는 분야로써, 약한 광학적 신호를 증가시킴에 따라 바이오 분야나 뉴로사이언스에 매우 중요한 분야로 대두되었다. 플라즈모닉 구조를 제작하기 위해선 나노 구조의 크기 높이 그리고 입사광의 입사각 등 다양한 변수들이 존재하는데 본 논문에서는 플라즈모닉 나노구조의 제작을 위한 은 증착 높이에 따른 플라즈모닉 나노구조의 광학적 특성에 대한 연구를 진행하였다. 은 증착은 플라즈모닉 효과를 보기 위해 다양하게 사용하고 있는 금속으로 특정 파장에 반응을 보기 위해 제작한 구조 형태와 유사한 구조를 시간영역 유한차분(FDTD)법을 통해 광 특성을 예측하여, 최종적으로 제작한 구조의 은 나노 입자 부근에 에너지가 집중되는 결과를 확인하였다.

Keywords

MOKRBW_2019_v26n2_55_f0001.png 이미지

Fig. 1. Schematic of plasmonic effect.

MOKRBW_2019_v26n2_55_f0002.png 이미지

Fig. 2. Schematic of plasmonic nanostructure.

MOKRBW_2019_v26n2_55_f0003.png 이미지

Fig. 3. Transmittance depending on height of deposited silver with plasmonic nanostructure.

MOKRBW_2019_v26n2_55_f0004.png 이미지

Fig. 4. Electric field depending on height of deposited silver with plasmonic nanostructure: (a) 3D of electric field and (b) zx-plane of electric field at 60 nm silver deposition.

MOKRBW_2019_v26n2_55_f0005.png 이미지

Fig. 5. Continued.

MOKRBW_2019_v26n2_55_f0006.png 이미지

Fig. 5. (a) Far-field gain, (b) Current density, and (c) Power flow depending on the height of deposited silver with plasmonic nanostructure.

References

  1. T. T. K. Nguyen, Q. M. Ngo, and T. K. Nguyen, "Design, Modeling, and Numerical Characteristics of the Plasmonic Dipole Nano-Antennas for Maximum Field Enhancement", Applied Computational Electromagnetics Society Journal, 32(7), 634 (2017).
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces", Science, 339(6125), 1232009 (2013). https://doi.org/10.1126/science.1232009
  3. R. Piccoli, A. Rovere, A. Toma, R. Morandotti, and L. Razzari, "Terahertz Nanoantennas for Enhanced Spectroscopy", Terahertz Spectroscopy: A Cutting Edge Technology, 21, (2017).
  4. J. R. Fan, J. Zhu, W. G. Wu, and Y. Huang, "Plasmonic Metasurfaces Based on Nanopin?Cavity Resonator for Quantitative Colorimetric Ricin Sensing", Small, 13(1), 1601710 (2017). https://doi.org/10.1002/smll.201601710
  5. M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures", Physical Review B, 61(20), 14078 (2000). https://doi.org/10.1103/PhysRevB.61.14078
  6. D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, "Template-stripped tunable plasmonic devices on stretchable and rollable substrates", Acs Nano, 9(11), 10647-10654 (2015). https://doi.org/10.1021/acsnano.5b05279
  7. X. Xu, S. C. Lin, Q. Li, Z. Zhang, I. N. Ivanov, Y. Li, ... and P. C. Snijders, "Optical Control of Fluorescence through plasmonic eigenmode extinction", Scientific reports, 5, 9911 (2015). https://doi.org/10.1038/srep09911
  8. K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, "Metalenhanced fluorescence from nanoparticulate zinc films", The Journal of Physical Chemistry C, 112(47), 18368-18375 (2008). https://doi.org/10.1021/jp806790u
  9. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions", Science, 311(5758), 189-193 (2006). https://doi.org/10.1126/science.1114849
  10. J. S. Kang, J. H. Kim, and M. Y. Jeong, "A Study on the Silver Nanoparticle Deposition for Optical Amplification", J. Microelectron. Packag. Soc., 25(1), 11-15 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.011
  11. J. Homola, and M. Piliarik, "Surface plasmon resonance (SPR) sensors", In Surface plasmon resonance based sensors, pp. 45-67, Springer, Berlin, Heidelberg (2006).
  12. G. Kim, K. M. Jung, J. T. Moon, and J. H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51-56 (2014). https://doi.org/10.6117/kmeps.2014.21.4.051
  13. I. Avrutsky, I. "Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain", Physical Review B, 70(15), 155416 (2004). https://doi.org/10.1103/PhysRevB.70.155416