DOI QR코드

DOI QR Code

Characteristics of Stimulated Brillouin Scattering Suppression in High-power Fiber Lasers Using Temperature Gradients

온도구배에 의한 고출력 광섬유 레이저의 유도 브릴루앙 산란 억제 특성

  • Jeong, Seongmook (Future Technology R&D-2., LIGNex1) ;
  • Kim, Kihyuck (Future Technology R&D-2., LIGNex1) ;
  • Lee, Sunghun (Future Technology R&D-2., LIGNex1) ;
  • Hwang, Soonhwi (Future Technology R&D-2., LIGNex1) ;
  • Yang, Hwanseok (Future Technology R&D-2., LIGNex1) ;
  • Moon, Byunghyuck (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Jhon, Young Min (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Park, Min Kyu (Ground Technology Research Institute 3rd Directorate, Agency for Defense Development) ;
  • Lee, Jung Hwan (Ground Technology Research Institute 3rd Directorate, Agency for Defense Development)
  • 정성묵 (LIG넥스원 미래기술연구소 2팀) ;
  • 김기혁 (LIG넥스원 미래기술연구소 2팀) ;
  • 이성헌 (LIG넥스원 미래기술연구소 2팀) ;
  • 황순휘 (LIG넥스원 미래기술연구소 2팀) ;
  • 양환석 (LIG넥스원 미래기술연구소 2팀) ;
  • 문병혁 (한국과학기술연구원 센서시스템 연구센터) ;
  • 전영민 (한국과학기술연구원 센서시스템 연구센터) ;
  • 박민규 (국방과학연구소 지상기술연구원 3부) ;
  • 이정환 (국방과학연구소 지상기술연구원 3부)
  • Received : 2019.04.05
  • Accepted : 2019.05.29
  • Published : 2019.08.25

Abstract

In this paper, we studied characteristics of stimulated Brillouin scattering (SBS) suppression in high-power fiber lasers by using apparatuses applying a temperature gradient (i.e. a step, a sine shape, and random temperature distribution) along the fiber. From the ytterbium-doped polarization-maintaining fiber master oscillator power amplifier built in house, we measured the back-reflection spectrum and power for each temperature gradient, showing that the step shape temperature distribution was the most effective way to suppress SBS. In addition, we investigated the interaction of pseudo-random binary sequence phase modulation conditions and temperature gradients for SBS suppression.

본 논문에서는 고출력 광섬유 레이저의 유도 브릴루앙 산란 억제 특성을 분석하기 위하여, 구형파, 사인파, 임의파 조건의 온도구배 기구부를 설계 및 제작하였다. 또한 전광섬유 MOPA (master oscillator power amplifier) 구조의 이터븀 첨가 편광유지 광섬유 증폭기를 제작하였으며, 온도구배 조건별 역반사 스펙트럼 및 출력을 측정하였다. 구형파 조건의 온도구배에 의해 유도 브릴루앙 산란이 가장 효과적으로 억제되었으며, PRBS (pseudo-random binary sequence) 위상변조 조건과 온도구배 간의 유도 브릴루앙 산란 특성에 끼치는 상호 영향성을 분석하였다.

Keywords

KGHHBU_2019_v30n4_167_f0001.png 이미지

Fig. 1. Design and development of temperature gradient apparatus. (a) Stepwise temperature gradient using bobbin-type apparatus. (b) Sinusoidal temperature gradient using spiral-type apparatus. (c) Random temperature gradient using disk-type apparatus.

KGHHBU_2019_v30n4_167_f0002.png 이미지

Fig. 2. Measurement results of temperature distribution by the thermal camera. (a) Stepwise temperature gradient using bobbin-type apparatus. (b) Sinusoidal temperature gradient using spiral-type apparatus. (c) Random temperature gradient using disk-type apparatus.

KGHHBU_2019_v30n4_167_f0003.png 이미지

Fig. 3. Schematic diagram of the SBS measurement step.

KGHHBU_2019_v30n4_167_f0004.png 이미지

Fig. 4. Measurement result of the seed laser linewidth. (a) Schematic diagram of the self-heterodyne step. (b) Result of the seed laser linewidth.

KGHHBU_2019_v30n4_167_f0005.png 이미지

Fig. 5. Characteristics of SBS suppression using temperature gradients at 155 W laser output power. (a) Measurement results of the back reflection optical spectrum by changing the temperature deviation of stepwise temperature gradients. (b) Measurement results of the back reflection optical power by temperature gradients.

KGHHBU_2019_v30n4_167_f0006.png 이미지

Fig. 6. Characteristics of SBS suppression by changing the PRBS patterns at 217 W laser output power.

KGHHBU_2019_v30n4_167_f0007.png 이미지

Fig. 7. Interaction of the PRBS pattern and temperature gradient for SBS suppression. (a) Changing the PRBS pattern without temperature gradient. (b) Changing the PRBS pattern with stepwise temperature gradient of 45℃.

Table 1. Back reflection power with and without temperature gradient for various conditions of PRBS pattern at 217 W laser power

KGHHBU_2019_v30n4_167_t0001.png 이미지

References

  1. T. J. Wagner, "Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division," Proc. SPIE 8237, 823718 (2012).
  2. Y. H. Park, Y. S. Youn, M. W. Jung, C. Jun, B.-A. Yu, and W. Shin, "Polarization-maintained single-mode 400-W Yb-doped fiber laser with 2.5-GHz linewidth from a 3-stage MOPA system," Korean J. Opt. Photon. 29, 159-165 (2018). https://doi.org/10.3807/KJOP.2018.29.4.159
  3. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, "11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber," Proc. SPIE 6873, 68730N (2008).
  4. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). https://doi.org/10.1364/AO.11.002489
  5. R. Engelbrecht, J. Hagen, and M. Schmidt, "SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density," Proc. SPIE 5777, 795-799 (2005).
  6. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
  7. J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, A. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers," Opt. Express 18, 18138-18150 (2010). https://doi.org/10.1364/OE.18.018138
  8. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009). https://doi.org/10.1364/OE.17.024317
  9. P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, "The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers," Opt. Mater. 35, 1627-1632 (2013). https://doi.org/10.1016/j.optmat.2013.04.006
  10. J. D. Marconi, J. M. C. Boggio, and H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett. 40, 1213-1214 (2004). https://doi.org/10.1049/el:20045961
  11. C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
  12. T. Kurashima, T. Horiguchi, and M. Tateda, "Thermal effects of Brillouingain spectra in single-mode fibers," IEEE Photon. Technol. Lett. 2, 718-720 (1990). https://doi.org/10.1109/68.60770
  13. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, "502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier," Opt. Express 15, 17044-17050 (2007). https://doi.org/10.1364/OE.15.017044
  14. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Technol. 19, 1691-1697 (2001). https://doi.org/10.1109/50.964069
  15. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677
  16. J. E. Rotenberg, P. A. Thielen, M. Wickham, and C. P. Asman, "Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers," Proc. SPIE 6873, 68730O (2008).
  17. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightwave Technol. 23, 3808-3814 (2005). https://doi.org/10.1109/JLT.2005.856226
  18. R. Engelbrecht, A. Dobroschke, and B. Schmauss, "SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine," in Proc. IEEE/LEOS Winter Topicals Meeting Series (Austria, Jan. 2009), WC1.3, 248-249 (2009).
  19. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  20. B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671
  21. I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, "Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers," Proc. SPIE, 9728, 972801 (2016).
  22. A. Motil, A. Bergman, and M. Tur, "State of the art of Brillouin fiber-optic distributed sensing," Opt. Laser Technol. 78, 81-103 (2016). https://doi.org/10.1016/j.optlastec.2015.09.013