DOI QR코드

DOI QR Code

A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments

해양으로 배출되는 실리콘계 소포제의 생태독성 연구

  • Received : 2018.12.13
  • Accepted : 2019.02.25
  • Published : 2019.02.28

Abstract

In order to understand the effects of the main components of antifoaming agents on the marine benthic ecosystem when silicone-based antifoaming agents are discharged into marine environments, eco-toxicity testing was performed on silicone and alcohol-based antifoaming agent by using benthic amphipod (Monocorophium acherusicum) and luminescent bacteria (Vibrio fischeri). The toxic effects of Polydimethylsiloxane (PDMS) as a main component of silicone-based antifoaming agents on aquatic organisms were also researched. In the results of the eco-toxicity test, luminescent bacteria showed a maximum of 9 times more toxic effects than benthic amphipod for alcohol-based antifoaming agents, and silicone-based antifoaming agents showed a maximum of 400 times more toxic effects than alcohol-based. The $LC_{50}$ and $EC_{50}$ values of PDMS ranged from 10 to $44,500{\mu}g/L$ in phytoplankton, invertebrate, and fish. In the results of applying PBT (P: persistency, B: bioaccumulation, T: toxicity) characteristics as an index showing the qualitative characteristics of PDMS, persistency (P) and bioaccumulation (B) were confirmed. Thus, when PDMS is discharged to marine environments, it could accumulate in the upper trophic level through bioaccumulation and the food chain, which could have negative effects on benthic organisms. The results of this study may be used for objective and scientific risk assessment, considering the major components of antifoaming agents when investigating the effects of various discharged antifoaming agents in marine ecosystem.

본 연구는 실리콘계 소포제가 해양으로 배출되었을 때 소포제 내에 존재하는 주요 성분들이 해양 저서환경에 서식하는 생물에게 미치는 영향을 알아보기 위해 실리콘 및 알코올계 소포제에 대해 저서성단각류(Monocorophium acherusicum)와 발광박테리아(Vibrio fischeri)를 이용하여 해양생태독성실험을 수행하였고 실리콘계 소포제의 주요성분인 디메틸폴리실록산(PDMS)에 대한 수중생물 독성영향을 조사하였다. 실리콘 및 알코올계 소포제에 대한 발광박테리아와 저서성단각류를 이용한 독성실험결과, 실험생물별 독성영향은 발광박테리아가 저서성 단각류에 비해 알코올계 소포제에서 최대 9배 까지 민감한 독성영향을 보였으며 소포제 종류별 독성영향은 실리콘계 소포제가 알코올계 소포제에 비해 최대 400배 이상 높은 독성영향이 나타났다. 실리콘계 소포제의 주요성분인 PDMS가 수중생물에 미치는 영향을 조사한 결과, 식물플랑크톤, 무척추동물 및 어류에 대한 반수치사농도($LC_{50}$)및 반수영향농도($EC_{50}$)값은 $10{\sim}44,500{\mu}g/L$의 범위로 나타났다. 물질의 정성적인 특성을 나타내는 지표인 PBT(P: persistency, B: bioaccumulation, T: toxicity)특성을 PDMS에 적용한 결과, 지속성(P)과 생물농축성(B)의 특성을 가지는 것으로 나타나 PDMS가 해양으로 배출될 경우 생물농축 및 먹이사슬을 통한 상위 영양단계로 축적될 가능성이 존재하며 저서생물에게 부정적인 영향을 미칠 수 있을 것으로 나타났다. 본 연구결과로 향후 실제 해양으로 배출되는 다양한 소포제가 해양생태계에 미치는 영향조사시 소포제 내 주요성분을 고려한 보다 객관적이고 과학적인 위해성평가에 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Bridge, J. and K. R. Solomon(2016), Quantitative weight-ofevidence analysis of the persistence, bioaccumulation, toxicity, and potential for long-range transport of the cyclic volatile methyl siloxanes, Journal of Toxicology and Environmental Health, Part B, Vol. 19, No. 8, pp. 345-379. https://doi.org/10.1080/10937404.2016.1200505
  2. Brooke, D. N., M. J. Crookes, D. Gray and S. Robertson(2009), Environmental risk assessment report: decamethylcyclopentasiloxane, Environment Agency of England and Wales, Bristol, UK.
  3. Buhl, K. J., S. J. Hamilton and J. C. Schmulbach(1993), Chronic toxicity of the bromoxynil formulation Buctril(R) to Daphnia magna exposed continuously and intermittently, Archives of Environmental Contamination and Toxicology, Vol. 25, No. 2, pp. 152-159. https://doi.org/10.1007/BF00212126
  4. Choi, C. W., J. Y. Jeong, H. S. Park, J. H. Moon, K. H. Lee and H. M. Lee(2009), Evaluation of toxicological data on food additives and guideline for ADI establishment -Polydimethylsiloxane as emulsifier-, Journal of Food Hygiene and Safety, Vol. 24, No. 4, pp. 352-356.
  5. Codex Alimentarius(2009), Codex General Standard for Food Additives (GSFA) online database, Retrieved from http://www.codexalimentarius.net/gsfaonline/index.html.
  6. Dewil, R., L. Appels and J. Baeyens(2006), Energy use of biogas hampered by the presence of siloxanes, Energy Conversion and Management, Vol. 47, pp. 1711-1722. https://doi.org/10.1016/j.enconman.2005.10.016
  7. EC(2011), European Commission, Commission Regulation (EU) No 253/2011, Publications Office of the European Union, Retrived from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0253&from=EN.
  8. Fendinger, N. J., R. G. Lehman and E. M. Mihaich(1997), Polydimethylsiloxane. In: Chandra Ed. G., Organosilocon Materials, Springer, Berlin. pp. 181-224.
  9. Hobbs, E. J., M. L. Keplinger and J. C. Calandra(1975), Toxicity of polydimethylsiloxanes in certain environmental systems, Environmental research, Vol. 10, No. 3, pp. 397-406. https://doi.org/10.1016/0013-9351(75)90035-3
  10. Hobson, J. F., R. Atkinson and W. P. L. Carter(1997), Volatile methylsiloxanes, In Organosilicon Materials, Springer, Berlin, Heidelberg, pp. 137-179.
  11. IUCLID(2005), IUCLID Dataset for Octamethylcyclotetrasiloxane, Willington, CT: Epona Associates LLC.
  12. Jeong, N. H., G. S. Park, J. S. Park and K. D. Nam(1999), Antifoamin properties for alphatic antifoaminer formula, Journal of The Korean Oil Chemists Society, Vol. 16, No. 2, pp. 147-153.
  13. Kim, J. Y., S. K. Kang, Y. M. Oh and S. H. Oh(2008), Design of the Submerged outlet structure of reducing foam at a power plant using a numerical model simulating air entrainment, Journal of Korean Society of Costal and Ocean Engineers, Vol. 20, No. 5, pp. 452-460.
  14. Kim, K., S. Yang, C. Lim and H. Park(2000), Quantitative analysis of silicone oil in antifoaming agent, Journal of the Korean Chemical Society, Vol. 44, No. 4, pp. 337-342.
  15. Kim, Y. H.(2010), The effect of HLB value of the surfacetants added in the silicon oil emulsion antifoamer on the antifoaming ability, Journal of The Korean Oil Chemists Society, Vol. 27, No. 3, pp. 223-232.
  16. Lassen, C., C. L. Hansen, S. H. Mikkelsen and J. Maag(2005). Siloxanes-consumption, toxicity and alternatives, Environmental project, 1031, PP. 1-111.
  17. Lee, S., H. B. Moon, G. J. Song and K. Ra(2014), A nationwide survey and emmission estimates of cyclic and linear siloxanes through sludge from waste water treatment plants in korea, Science of the Total Environment, No. 497, pp. 106-112.
  18. Mojsiewicz-Pieńkowska, K.(2014), Safety and toxicity aspects of polysiloxanes (silicones) application, Concise Encyclopedia of High Performance Silicones, pp. 243-251.
  19. Park, G. S., S. M. Lee, T. Han and J. S. Lee(2008), Establishment of standard methods for marine ecotoxicological test, Journal of the Korean Society of Oceanography, Vol. 13, No. 2, pp. 106-111.
  20. Ross, S. and I. D. Morrison(1988), Colloidal system and interfaces, Wiley, New York.
  21. Stevens, C., D. E. Powell, P. Makela and C. Karman(2001), Fate and effects of polydimethylsiloxane (PDMS) in marine environments, Marine pollution bulletin, Vol. 42, No. 7, pp. 536-543. https://doi.org/10.1016/S0025-326X(00)00229-0
  22. US EPA(2009), The ECOTOX (ECOTOXicology) database. Retrived from http://www.epa.gov/ecotox/ecotox_home.htm.
  23. US EPA(2012), ECOSARTM V. 1.11 (ECOlogical Structure Activity Relationship). Retrived from http://www.epa.gov/oppt/newchems/tools/21ecosar.htm.
  24. US EPA(2017), EPISUITETM V. 4.11 (Estimation Programs Interface SUITE), Retrived from https://www.epa.gov/tscascreening-tools/epi-suitetm-estimation-program-interface.
  25. Villarroel, M. J., E. Sancho, M. D. Ferrando and M. E. Andreu(1999), Effect of an acaricide on the reproduction and survival of Daphnia magna, Bulletin of environmental contamination and toxicology, Vol. 63, No. 2, pp. 167-173. https://doi.org/10.1007/s001289900962
  26. Wang, D. G., W. Norwood, M. Alaee, J. D. Byer and S. Brimble(2013), Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment, Chemosphere, Vol. 93, No. 5, pp. 711-725. https://doi.org/10.1016/j.chemosphere.2012.10.041
  27. Zhang, Z., H. Qi, N. Ren, Y. Li, D. Gao and K. Kannan(2011), Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, Northeastern China, Archives of environmental contamination and toxicology, Vol. 60, No. 2, pp. 204-211. https://doi.org/10.1007/s00244-010-9619-x