DOI QR코드

DOI QR Code

후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator

  • Lee, Changhyeong (Department of Aerospace Engineering, Pusan National University) ;
  • Oh, Yeongtaek (Department of Aerospace Engineering, Pusan National University) ;
  • Bae, Jihwan (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Deukho (Department of Aerospace Engineering, Pusan National University) ;
  • Kim, Kuisoon (Department of Aerospace Engineering, Pusan National University)
  • 투고 : 2018.12.24
  • 심사 : 2019.05.23
  • 발행 : 2019.08.01

초록

본 연구에서는 터빈 냉각에 널리 사용되는 핀-휜 배열에 대한 연구를 진행하였다. 본 연구에서 원형 튜브 전방에 익형 와류발생기가 위치하며, 익형 단면 형상은 NACA-9410을 사용하였다. 본 논문에서는 와류 발생기가 있는 핀-휜 배열 유동의 전열 성능과 유동 특성을 수직인 방향으로 변화시키며 기존의 핀-휜 유동과 비교하였다. 레이놀즈수 영역은 6000, 10000 그리고 15000 세 가지를 계산하였다. 전산 해석은 상용 프로그램인 ANSYS v18.0 CFX, 난류 모델은 $k-{\omega}$ SST를 사용하였다. 결과적으로 전열 성능은 최대 5.8% 증가하였고 압력 손실은 1% 미만으로 증가하였다.

In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

키워드

참고문헌

  1. Xu, J., Yao, J., Su, P., Lei, J., Wu, J., and Gao, T., "Heat transfer And Pressure Loss Characteristics Of Pin-fins With Different Shapes in a Wide Channel," ASME Turbo Expo, North Carolina, U.S.A., GT2017-63761, Jun. 2017.
  2. Sparrow, E.M. and Ramsey, J.W., Altemani, C.A.C., “Experiments on In-line Pin Fin Arrays and Performance Comparisons with Staggered Arrays,” ASME Journal of Heat Transfer, Vol. 102, No. 1, pp. 44-50, 1980. https://doi.org/10.1115/1.3244247
  3. He, Y.-L., Chu, P., Tao, W.Q., Zhang, Y.W., and Xie, T., “Analysis of Heat Transfer and Pressure Drop for Fin and Tube Heat Exchangers with Rectangular Winglet-type Vortex Generator,” Applied Thermal Engineering, Vol. 61, No. 2, pp. 770-783, 2013. https://doi.org/10.1016/j.applthermaleng.2012.02.040
  4. Fiebig, M., “Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement,” Journal of Heat and Fluid Flow, Vol. 16, No. 5, pp. 376-388, 1995. https://doi.org/10.1016/0142-727X(95)00043-P
  5. Joardar, A. and Jacobi, A.M., “Heat Transfer Enhancement by Winglet-type Vortex Generator Arrays in Compact Plain-fin and Tube Heat Exchangers,” International Journal of Refrigeration, Vol. 3, No. 1, pp. 87-97, 2008. https://doi.org/10.1016/j.ijrefrig.2007.04.011
  6. He, Y.L., Han, H., Tao, W.Q. and Zhang, Y.W., “Numerical Study of Heat Transfer Enhancement by Punched Winglet-type Vortex Generator Arrays in Fin and Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol. 55, No. 21-22, pp. 5449-5458, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.059
  7. Sarangi, S.K. and Mishra, D.P., "Effect of Winglet Location on Heat Transfer of a Finand-tube Heat Exchanger," Applied Thermal Engineering, Vol. 116, pp. 528-540, 2017. https://doi.org/10.1016/j.applthermaleng.2017.01.106
  8. ANSYS CFX V15.0, "ANSYS CFX Reference Guide," ANSYS, Inc., Canonsburg, P.A., U.S.A., 2013.
  9. Goldstein, R.J., Jabbari, M.Y. and Chen, S.B., “Convective Mass Transfer and Pressure Loss Characteristics of Staggerd Short Pin-fin Arrays,” Journal of Heat Mass Transfer, Vol. 37, No. 1, pp. 149-160, 1994. https://doi.org/10.1016/0017-9310(94)90018-3
  10. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 2007.
  11. Simoneau, R.J. and VanFossen, G.J., “Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow,” ASME Journal of Heat Transfer, Vol. 106, No. 6, pp. 42-48, 1984. https://doi.org/10.1115/1.3246657