DOI QR코드

DOI QR Code

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy

MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매

  • An, Soyeon (Optic & Electronic Component Material Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Optic & Electronic Component Material Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Optic & Electronic Component Material Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Ra, Yong-Ho (Optic & Electronic Component Material Center, Korea Institute of Ceramic Engineering & Technology)
  • 안소연 (한국세라믹기술원 전자융합본부 광전자부품소재센터) ;
  • 전대우 (한국세라믹기술원 전자융합본부 광전자부품소재센터) ;
  • 황종희 (한국세라믹기술원 전자융합본부 광전자부품소재센터) ;
  • 라용호 (한국세라믹기술원 전자융합본부 광전자부품소재센터)
  • Received : 2019.07.30
  • Accepted : 2019.08.06
  • Published : 2019.08.31

Abstract

We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

우리는 분자선 에피택시(Molecular Beam Epitaxy) 법을 사용하여 광전기화학적 물분해 수소생산용 고종횡비 GaN 기반 나노와이어를 Si 기판 위에 성공적으로 제작하였다. 주사전자현미경(SEM)과 에너지분산형 분광법(EDX)은 p-GaN:Mg 및 p-InGaN 나노와이어가 고밀도와 함께 수직으로 성장 되었음을 증명하였다. 또한, p-InGaN 나노와이어의 발광 파장을 552 nm에서 590 nm까지의 조절이 가능하다는 것을 확인하였다. 이렇게 제작된 p-InGaN 나노와이어는 태양광을 통해 외부 전위 없이 물분해가 가능한 수소생산용 광촉매로써 매우 유용하게 사용될 수 있다.

Keywords

References

  1. M.D. Doherty, D.C. Grills, J.T. Muckerman, D.E. Polyansky and E. Fujita, "Toward more efficient photochemical $CO_2$ reduction", Coord. Chem. Rev. 254 (2010) 2472. https://doi.org/10.1016/j.ccr.2009.12.013
  2. Y. Amao, "Solar fuel production based on the artificial photosynthesis system", ChemCatChem 3 (2011) 458. https://doi.org/10.1002/cctc.201000293
  3. S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J.H. Pijpers and D.G. Nocera, "Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts", Science 334 (2011) 645. https://doi.org/10.1126/science.1209816
  4. A.E. Romanov, T.J. Baker, S. Nakamura and J.S. Speck, "Strain-induced polarization in wurtzite III-nitride semipolar layers", J. Appl. Phys. 100 (2006) 023522. https://doi.org/10.1063/1.2218385
  5. K. Kishino and S. Ishizawa, "Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns", Nanotechnology 26 (2015) 225602. https://doi.org/10.1088/0957-4484/26/22/225602
  6. S. Kang, U. Chatterjee, D.-Y. Um, Y.-T. Yu, I.-S. Seo and C.-R. Lee, "Ultraviolet-C photodetector fabricated using Si-doped n-AlGaN nanorods grown by MOCVD", ACS Photonics 4 (2017) 2595. https://doi.org/10.1021/acsphotonics.7b01047
  7. H.P. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G.A. Botton and Z. Mi, "Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes", Nano Lett. 12 (2012) 1317. https://doi.org/10.1021/nl203860b
  8. H.P. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G.A. Botton and Z. Mi, "p-Type modulation doped InGaN/GaN dot-in-a-wire white-lightemitting diodes monolithically grown on Si(111)", Nano Lett. 11 (2011) 1919. https://doi.org/10.1021/nl104536x
  9. Y.-H. Ra, R. Navamathavan, J.-H. Park, K.-Y. Song, Y.-M. Lee, D.-W. Kim, B.B. Jun and C.-R. Lee, "Highly uniform characteristics of GaN nanorods grown on Si(111) by metalorganic chemical vapor deposition", Jpn. J. Appl. Phys. 49 (2010) 091003. https://doi.org/10.1143/JJAP.49.091003
  10. Y.-H. Ra, R.T. Rashid, X. Liu, J. Lee and Z. Mi, "Scalable nanowire photonic crystals: molding the light emission of InGaN", Adv. Funct. Mater. 27 (2017) 1702364. https://doi.org/10.1002/adfm.201702364
  11. H.P. Nguyen, M. Djavid, S.Y. Woo, X. Liu, A.T. Connie, S. Sadaf, Q. Wang, G.A. Botton, I. Shih and Z. Mi, "Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers", Sci. Rep. 5 (2015) 7744. https://doi.org/10.1038/srep07744
  12. Y.H. Ra, R. Navamathavan, J.H. Park and C.R. Lee, "High-quality uniaxial $In_{x}Ga_{1-x}N/GaN$ multiple quantum well nanowires on Si(111) grown by metal-organic chemical vapor deposition and light-emitting diode fabrication", ACS Appl. Mater. Interfaces 5 (2013) 2111. https://doi.org/10.1021/am303056v
  13. L. Rigutti, G. Jacopin, L. Largeau, E. Galopin, A. De Luna Bugallo, F.H. Julien, J.C. Harmand, F. Glas and M. Tchernycheva, "Correlation of optical and structural properties of GaN/AlN core-shell nanowires", Phys. Rev. B 83 (2011) 155320. https://doi.org/10.1103/PhysRevB.83.155320
  14. S.M. Sadaf, Y.H. Ra, H.P. Nguyen, M. Djavid and Z. Mi, "Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes", Nano Lett. 15 (2015) 6696. https://doi.org/10.1021/acs.nanolett.5b02515
  15. K. Kishino and S. Ishizawa, "Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns", Nanotechnology 26 (2015) 225602. https://doi.org/10.1088/0957-4484/26/22/225602
  16. R. Wang, X. Liu, I. Shih and Z. Mi, "High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si", Appl. Phys. Lett. 106 (2015) 261104. https://doi.org/10.1063/1.4923246
  17. S.M. Sadaf, Y.H. Ra, T. Szkopek and Z. Mi, "Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes", Nano Lett. 16 (2016) 1076. https://doi.org/10.1021/acs.nanolett.5b04215
  18. Y.H. Ra, R. Wang, S.Y. Woo, M. Djavid, S.M. Sadaf, J. Lee, G.A. Botton and Z. Mi, "Full-color single nanowire pixels for projection displays", Nano Lett. 16 (2016) 4608. https://doi.org/10.1021/acs.nanolett.6b01929
  19. H.P. Nguyen, S. Zhang, A.T. Connie, M.G. Kibria, Q. Wang, I. Shih and Z. Mi, "Breaking the carrier injection bottleneck of phosphor-free nanowire white lightemitting diodes", Nano Lett. 13 (2013) 5437. https://doi.org/10.1021/nl4030165
  20. Y.H. Ra, K. San and C.R. Lee, "Ultraviolet light-emitting diode using nonpolar AlGaN core-shell nanowire heterostructures", Adv. Optical Mater. 6 (2018) 1701391. https://doi.org/10.1002/adom.201701391