DOI QR코드

DOI QR Code

Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data -

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 -

  • 최용규 (경성대학교 공과대학 건설환경도시공학부) ;
  • 이원제 ((주)유니콘기연) ;
  • 이창욱 (경성대학교 대학원 토목공학과) ;
  • 권오균 (계명대학교 공과대학 건축토목공학부)
  • Received : 2019.06.04
  • Accepted : 2019.08.19
  • Published : 2019.08.31

Abstract

Based on pile load test results for various pile types that were constructed in-situ and pile design data of prebored PHC piles, the ratio of skin friction to total capacity (SRF) was analyzed. A SRF distribution range from the pile load test results for pilot test prebored PHC piles was 42~99% regardless of relative penetration lengths, soil types, and pile load test types. However, a SRF distribution range from the pile design data for prebored PHC piles was 20~53% regardless of relative penetration lengths and pile diameters. Also, a SRF distribution range from the restrike dynamic pile load test results for pretest working prebored PHC piles was a scattered range of 4~83% regardless of pile diameters, relative penetration lengths and soil types. The scattered SRF of pretest working piles was caused to the quality control issue on the filling of cement milk around piles and this quality control issue should be improved. The average SRF calculated by the current design method was estimated to be 2.2 times lower than the average SRF of the pilot test piles. It is because skin friction resistance is calculated at a very low level. Therefore, a new design method for skin friction will be proposed based on this study.

실제 시공된 말뚝들의 재하시험 자료 및 매입 PHC말뚝의 설계 자료로부터 전체지지력에 대한 주면마찰력의 분담율인 SRF를 분석하였다. 현장에서 시험 시공된 말뚝의 SRF는 말뚝의 종류, 상대근입길이, 지반의 종류, 재하시험의 종류에 상관없이 42~99%이었다. 매입 PHC말뚝에 대한 설계 자료에서 구한 SRF는 말뚝의 직경, 상대근입길이에 상관없이 풍화암에 소켓된 경우 20~53%의 범위에 분포하였다. 사용말뚝으로 실제 시공된 매입 PHC말뚝에서 재항타 동재하시험 자료로부터 구한 SRF는 말뚝의 직경, 상대근입길이, 지반의 종류에 상관없이 4~83%의 범위에 분산되어 분포하였다. 사용말뚝에서 SRF가 낮은 수준으로 나타나는 이유는 매입 PHC말뚝의 주면고정액의 충전이 제대로 이루어지지 않은 채 시공된 현황으로 볼 수 있었으며 따라서 주면고정액의 시공관리에서 시급하게 개선해야 할 현황이었다. 풍화암에 소켓된 매입 PHC말뚝의 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 주면마찰력의 SRF는 실제 현장 시공 말뚝의 SRF보다 평균적으로 2.2배 정도로 낮은 수준으로 평가되었다. 이는 설계에서 사용하고 있는 산정공식에 의한 극한주면마찰력이 매우 낮은 수준으로 계산되기 때문이다. 따라서 SRF를 만족시킬 수 있는 새로운 주면마찰력 산정공식의 제안 필요성이 있는 것으로 판단된다.

Keywords

References

  1. Choi, Y. K. (1997), Report on Pile load test for design purpose during working design stage of the 2nd Busan grand bridge construction project, Research Institute of Engineering & Technology, Kyungsung University, pp.1-143. (In Korean)
  2. Choi, Y. K. (2000), Review report on stability of drilled shafts of Gwangan grand bridge construction project through static pile load tests and numerical analyses, Research Institute of Engineering & Technology, Kyungsung University, pp.1-455. (In Korean)
  3. Choi, Y. K. (2001), Report on design change of pile foundations during Centum city approach road (Suyeong 3rd bridge) construction project, Research Institute of Engineering & Technology, Kyungsung University, pp.1-205. (In Korean)
  4. Choi, Y. K. Kwon, O. K., Lee, W. J., Yeo, K. K., and Jeon, B. H. (2017), A Study on Behavior of PHC Piles with Various End Bearing Methods, KGS Report No. KGS2017-281, 2017. 10., pp.1-161. (In Korean)
  5. Choi, Y. K., Kwon, O. K., Lee, W. J., and Yeo, K. K., and Park, M. C. (2019), A Study for Establishing of Behavior, Design and Construction on Prebored and Precast Piles (Development of Capacity Prediction Method and Chart for Prebored and precast Piles Considering Soil Types, Pile Penetration Lengths, Pile Diameter), Report No. KGS 2019-083, pp.21-45, 273-300. (In Korean)
  6. G-TEC (2017), Final Report of Static Pile Load Test with Load Distribution Analysis for Estimating Resistance Factor on Representative Prebored and Precast Piling Method, 2017. 10., pp.1-86. (In Korean)
  7. KGS (2016), Static Pile Load Test Report at OO Field for Estimating Resistance Factor on Representative Prebored and Precast Piling Method, 2016. 11. pp.1-12 (In Korean).
  8. KGS (2017a), Static Pile Load Test Report at OO Field for Estimating Resistance Factor on Representative Prebored and Precast Piling Method, 2017. 10. pp.1-43. (In Korean)
  9. KGS (2017b), Static Pile Load Test Report at OO Field for Estimating Resistance Factor on Representative Prebored and Precast Piling Method, 2017. 10, pp.1-23. (In Korean)
  10. Kim, B. I., Lee, S. H., Kim, Y. U., Jo, S. M., Yoon, C. Y., and Jo, Y. J. (2013), Foundation Engineering, MoonUnDang, ISBN 978-89-7393-985-5, p.167. (In Korean)
  11. SGS (2017), Static Pile Load Test Report at OO Field for Estimating Resistance Factor on Prebored and PHC Piling Method, 2017. 11., pp.1-70. (In Korean)
  12. Tomlinson, M. J. (1994), Pile design and construction practice 4th edition, E & FN Spon., pp.133-134. (In Korean)

Cited by

  1. 토질특성에 따른 현장타설말뚝 지지력 산정 경험식의 적용성 vol.18, pp.4, 2019, https://doi.org/10.12814/jkgss.2019.18.4.167
  2. Study on the Increase of the Supporting Capacity of a Cement Milk Pile with Expansive Additives vol.11, pp.21, 2021, https://doi.org/10.3390/app11219922