DOI QR코드

DOI QR Code

Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality

효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법

  • Lee, Jin-Young (Department of Multimedia Engineering, Sunchon National University) ;
  • Kim, Jongho (Department of Multimedia Engineering, Sunchon National University)
  • 이진영 (순천대학교 멀티미디어공학과) ;
  • 김종호 (순천대학교 멀티미디어공학과)
  • Received : 2019.05.14
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

This paper presents a marker image evaluation method based on analysis of object distribution in images and classification of images with repetitive patterns for effective marker-based augmented reality (AR) system development. We measure the variance of feature point coordinates to distinguish marker images that are vulnerable to occlusion, since object distribution affects object tracking performance according to partial occlusion in the images. Moreover, we propose a method to classify images suitable for object recognition and tracking based on the fact that the distributions of descriptor vectors among general images and repetitive-pattern images are significantly different. Comprehensive experiments for marker images confirm that the proposed marker image evaluation method distinguishes images vulnerable to occlusion and repetitive-pattern images very well. Furthermore, we suggest that scale-invariant feature transform (SIFT) is superior to speeded up robust features (SURF) in terms of object tracking in marker images. The proposed method provides users with suitability information for various images, and it helps AR systems to be realized more effectively.

본 논문에서는 효과적인 마커기반의 증강현실 구현을 위하여 영상 내 객체의 분포에 대한 분석과 반복 패턴을 포함하는 영상의 분류를 통한 마커영상의 평가 방법을 제안한다. 객체의 분포는 영상의 부분적 가림 현상에 따라 객체추적성능에 영향을 미치기 때문에 특징점 좌표의 분산을 이용하여 가림 현상에 취약한 마커영상을 구분할 수 있도록 하였고, 일반 영상과 반복 패턴을 포함하는 영상의 특징점 기술자 벡터의 분포가 현저하게 다르다는 사실에 기반하여 객체의 인식 및 추적에 적합한 영상을 구분할 수 있는 방법을 제안한다. 다양한 실험 결과 제안하는 마커 평가 방법이 가림 현상에 취약한 영상 및 반복 패턴 영상을 구분하는데 우수한 성능을 보이는 것을 확인하였다. 또한 마커영상에 대한 객체 추적 등의 안정성 측면에서 SURF보다 SIFT 기법이 우수한 성능을 보임을 확인할 수 있었다. 이러한 결과를 이용하여 다양한 종류의 마커영상에 대한 적합성 정보를 사용자에게 제공함으로써 효과적인 증강현실 시스템을 구현할 수 있을 것으로 판단된다.

Keywords

References

  1. D. Krevelen, R. Poelman, "A survey of augmented reality technologies, applications and limitations," International Journal of Virtual Reality , Vol.9, No.2, pp.1-20, Jun. 2010. https://doi.org/10.20870/IJVR.2010.9.2.2767
  2. D. Chatzopoulos, C. Bermejo, Z. Huang, P. Hui, "Mobile augmented reality survey: From where we are to where we go," IEEE Acess , Vol.5, No.4, pp.6917-6950, Apr. 2017. DOI: https://dx.doi.org/10.1109/ACCESS.2017.2698164
  3. J. Lee, S. Jung, C. Sim, J. Kim, "Distribution analysis of feature points of the marker-based augmented reality," Proceedings of the 7th International Conference on Next Generation Computer and Information Technology , Sapporo, Japan, pp.91-95, Aug. 2018.
  4. J. Yoon, I. Moon, "The study on marker-less tracking algorithm performance based on mobile augmented reality," The Journal of Advance Navigation Technology , Vol.16, No.6, pp.1032-1037, Dec. 2012. DOI: https://dx.doi.org/10.12673/jkoni.2012.16.6.1032
  5. J. Lee, Marker Evaluation Method Based on SIFT Descriptor for Effective Augmented Reality System Implementation , Master's thesis, Sunchon National University, Suncheon, Korea, pp.20-28, 2019.
  6. S. Park, T. Han, "Improvement of jittering in marker detection step for marker based augmented reality," Proceedings of Human Computer Interaction Conference (HCI 2010), Pyeongchang, Korea, pp.403- 406, Jan. 2010.
  7. Y. Lee, "Development of cultural content using a markerless tracking-based augmented reality," Smart Media Journal , Vol.5, No.4, pp.90-95, Dec. 2016.
  8. PTC. Vuforia Developer Library [Internet]. Santa Clara (CA): PTC, Available From: https://library.vuforia.com/content/vuforia-library/en /articles/Solution/Optimizing-Target-Detection-and- Tracking-Stability.html (accessed May 13. 2019)
  9. S. Mok, K. Jung, B. Choi, "Clustering and matching repetitive pattern of feature points for building-AR," Journal of Korean Institute of Information Scientists and Engineers: Software and Applications , Vol.39, No.11, pp.902-911, Nov. 2012.
  10. J. Pritts, O. Chum, J. Matas, "Rectification and segmentation of coplanar repeated patterns," Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), Columbus, USA, pp.2973-2980, Jun. 2014. DOI: https://dx.doi.org/10.1109/CVPR.2014.380
  11. D. Lowe, "Distinctive image features from scaleinvariant keypoints," International Journal of Computer Vision , Vol.60, No.2, pp.91-110, Nov. 2004. DOI: https://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
  12. Describable Textures Dataset (DTD) [Internet]. Available From: https://www.robots.ox.ac.uk/-vgg/data/dtd (accessed May 13, 2019)
  13. H. Bay, A. Ess, T. Tuytelaars, L. Gool, "Speeded- up robust features (SURF)," Computer Vision and Image Understanding , Vol.110, No.3, pp.346-359, Jun. 2008. DOI: https://dx.doi.org/10.1016/j.cviu.2007.09.014