Acknowledgement
Supported by : Natural Sciences and Engineering Research Council of Canada
References
- S. Alaca and Y. Kesicioglu, Representations by certain octonary quadratic forms whose coefficients are 1, 2, 3 and 6, Int. J. Number Theory, 10(2014), 133-150. https://doi.org/10.1142/S1793042113500851
-
S. Alaca and Y. Kesicioglu, Evaluation of the convolution sums
$\sum_{l+27m=n}^\frac{\sigma}(l){\sigma}(m)$ and$\sum_{l+32m=n}^\frac{\sigma}(l){\sigma}(m)$ , Int. J. Number Theory, 12(2016), 1-13. https://doi.org/10.1142/S1793042116500019 - H. H. Chan and S. Cooper, Powers of theta functions, Pacific J. Math., 235(2008), 1-14. https://doi.org/10.2140/pjm.2008.235.1
- S. Cooper and P. C. Toh, Quintic and septic Eisenstein series, Ramanujan J., 19(2009), 163-181. https://doi.org/10.1007/s11139-008-9123-3
-
S. Cooper and D. Ye, Evaluation of the convolution sums
$\sum_{l+20m=n}^\frac{\sigma}(l){\sigma}(m)$ ,$\sum_{4l+5m=n}^\frac{\sigma}(l){\sigma}(m)$ and$\sum_{2l+5m=n}^\frac{\sigma}(l){\sigma}(m)$ , Int. J. Number Theory, 10(2014), 1385-1394. https://doi.org/10.1142/S1793042114500341 - J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math., 14(1884), 156-163.
- J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Elementary evalua-tion of certain convolution sums involving divisor functions, Number Theory for the Millenium II, 229-274, A K Peters, Natick, Massachusetts, 2002.
- L. J. P. Kilford, Modular forms: a classical and computational introduction, 2nd edition, Imperial College Press, London, 2015.
- G. Kohler, Eta products and theta series identities, Springer Monographs in Mathematics, Springer, 2011.
- M. Lemire and K. S. Williams, Evaluation of two convolution sums involving the sum of divisors function, Bull. Austral. Math. Soc., 73(2006), 107-115. https://doi.org/10.1017/S0004972700038661
-
G. A. Lomadze, Representation of numbers by sums of the quadratic forms
$x^2_1+x_1x_2+x^2_2 $ , Acta Arith., 54(1989), 9-36. https://doi.org/10.4064/aa-54-1-9-36 - Maple (2016). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
-
B. Ramakrishnan and B. Sahu, Evaluation of the convolution sums
$\sum_{l+15m=n}^\frac{\sigma}(l){\sigma}(m)$ and$\sum_{3l+5m=n}^\frac{\sigma}(l){\sigma}(m)$ and an application, Int. J. Number Theory, 9(2013), 799-809. https://doi.org/10.1142/S179304211250162X - E. Royer, Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory, 3(2007), 231-261. https://doi.org/10.1142/S1793042107000924
- W. Stein, Modular forms, a computational approach, Graduate Studies in Mathematics 79, Amer. Math. Soc., 2007.
- K. S. Williams, Number theory in the spirit of Liouville, London Math. Soc. Student Texts 76, Cambridge University Press, London, 2011.
-
E.XX. W. Xia, X. L. Tian and O. X. M. Yao, Evaluation of the convolution sum
$\sum_{i+25j=n}^\frac{\sigma}(i){\sigma}(j)$ , Int. J. Number Theory, 10(2014), 1421-1430. https://doi.org/10.1142/S1793042114500365 -
D. Ye, Evaluation of the convolution sums
$\sum_{l+36m=n}^\frac{\sigma}(l){\sigma}(m)$ and$\sum_{4l+9m=n}^\frac{\sigma}(l){\sigma}(m)$ , Int. J. Number Theory, 11(2015), 171-183. https://doi.org/10.1142/S1793042115500104