DOI QR코드

DOI QR Code

The phylogeographic history of amphitropical Callophyllis variegata (Florideophyceae, Rhodophyta) in the Pacific Ocean

  • Bringloe, Trevor T. (Centre for Environmental and Molecular Algal Research (CEMAR), Biology Department, University of New Brunswick) ;
  • Macaya, Erasmo C. (Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografia, Universidad de Concepcion) ;
  • Saunders, Gary W. (Centre for Environmental and Molecular Algal Research (CEMAR), Biology Department, University of New Brunswick)
  • Received : 2019.01.04
  • Accepted : 2019.05.26
  • Published : 2019.06.15

Abstract

Chilean species of marine macroalgae with amphitropical distributions oftentimes result from introductions out of the Northern Hemisphere. This possibility was investigated using haplotype data in an amphitropical red macroalgae present in Chile, Callophyllis variegata. Published sequence records from Canada and the United States were supplemented with new collections from Chile (April 2014-November 2015). Specimens of C. variegata were amplified for the 5′ end of the cytochrome c oxidase subunit I gene (COI-5P) and the full length nuclear internal transcribed spacer region. Haplotype networks and biogeographic distributions were used to infer whether C. variegata was introduced between hemispheres, and several population parameters were estimated using IMa2 analyses. C. variegata displayed a natural amphitropical distribution, with an isolation time of approximately 938 ka between hemispheres. It is hypothesized that contemporary populations of C. variegata were established from a refugial population during the late Pleistocene, and may have crossed the tropics via rafting on buoyant species of kelp or along deep-water refugia coincident with global cooling, representing a rare case of a non-human mediated amphitropical distribution.

Keywords

References

  1. Arakaki, N., Alveal, K., Ramirez, M. E. & Fredericq, S. 2011. The genus Callophyllis (Kallymeniaceae, Rhodophyta) from the central-south Chilean coast ($33^{\circ}$ to $41^{\circ}$ S), with the description of two new species. Rev. Chil. Hist. Nat. 84:481-499. https://doi.org/10.4067/S0716-078X2011000400002
  2. Astorga, M. P., Hernandez, C. E., Valenzuela, C. P., Avaria- Llautureo, J. & Westermeier, R. 2012. Origin, diversification, and historical biogeography of the giant kelps genus Macrocystis: evidences from Bayesian phylogenetic analysis. Rev. Biol. Mar. Oceanogr. 47:573-579. https://doi.org/10.4067/S0718-19572012000300019
  3. Bennett, K. D. & Provan, J. 2008. What do we mean by 'refugia'? Quat. Sci. Rev. 27:2449-2455. https://doi.org/10.1016/j.quascirev.2008.08.019
  4. Bringloe, T. T. & Saunders, G. W. 2018. Mitochondrial DNA sequence data reveal the origins of postglacial marine macroalgal flora in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 589:45-58. https://doi.org/10.3354/meps12496
  5. Buschmann, A. H., Correa, J. A., Westermeier, R., Hernandez- Gonzalez, M. C. & Norambuena, R. 2001. Red algal farming in Chile: a review. Aquaculture 194:203-220. https://doi.org/10.1016/S0044-8486(00)00518-4
  6. Castelloe, J. & Templeton, A. R. 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol. Phylogenet. Evol. 3:102-113. https://doi.org/10.1006/mpev.1994.1013
  7. Castilla, J. C. & Neill, P. E. 2010. Marine bioinvasions in the Southeastern Pacific: status, ecology, economic impacts, conservation and management. In Rilov, G. & Crooks, J. A. (Eds.) Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives. Springer, Berlin, pp. 439-458.
  8. Castilla, J. C., Uribe, M., Bahamonde, N., Clarke, M., Desqueyroux- Faundez, R., Kong, I., Moyano, H., Rozbaczylo, N., Santelices, B., Valdovinos, C. & Zavala, P. 2005. Down under the Southeastern Pacific: marine non-indigenous species in Chile. Biol. Invasions 7:213-232. https://doi.org/10.1007/s10530-004-0198-5
  9. Coyer, J. A., Smith, G. J. & Andersen, R. A. 2001. Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS1 and ITS2 sequences. J. Phycol. 37:574-585. https://doi.org/10.1046/j.1529-8817.2001.037001574.x
  10. Dyke, A. & Prest, V. 1987. Paleogeography of northern North America, 18,000-5,000 years ago. Geological Survey of Canada, Ottawa, pp. 1-3.
  11. Edgar, G. J. 1987. Dispersal of faunal and floral propagules associated with drifting Macrocystis pyrifera plants. Mar. Biol. 95:599-610. https://doi.org/10.1007/BF00393104
  12. Fraser, C. I., Nikula, R. & Waters, J. M. 2011. Oceanic rafting by a coastal community. Proc. R. Soc. B. 278:649-655. https://doi.org/10.1098/rspb.2010.1117
  13. Geoffroy, A., Destombe, C., Kim, B., Mauger, S., Raffo, M. P., Kim, M. S. & Le Gall, L. 2016. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations. Ecol. Evol. 6:5635-5647. https://doi.org/10.1002/ece3.2135
  14. Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E. & Banks, S. 2007. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc. Natl. Acad. Sci. U. S. A. 104:16576-16580. https://doi.org/10.1073/pnas.0704778104
  15. Guillemin, M. L., Valero, M., Tellier, F., Macaya, E. C., Destombe, C. & Faugeron, S. 2016. Phylogeography of seaweeds in the South East Pacific: complex evolutionary processes along a latitudinal gradient. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environment Changes. Springer, Dordrecht, pp. 251-277.
  16. Hu, Z. M., Duan, D. L. & Lopez-Bautista, J. 2016. Seaweed phylogeography from 1994-2014: an overview. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change. Springer, Dordrecht, pp. 3-22.
  17. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  18. Kim, M. -S., Yang, E. C., Mansilla, A. & Boo, S. M. 2004. Recent introduction of Polysiphonia marrowii (Ceramiales, Rhodophyta) to Punta Arenas, Chile. Bot. Mar. 47:389-394.
  19. Li, J. J., Hu, Z. M. & Duan, D. L. 2016. Survival in glacial refugia versus postglacial dispersal in the North Atlantic: the cases of red seaweeds. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change. Springer, Dordrecht, pp. 309-330.
  20. Lindstrom, S. C., Hughey, J. R. & Martone, P. T. 2011. New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the Northeast Pacific. Phycologia 50:661-683. https://doi.org/10.2216/10-38.1
  21. Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic $^{18}O$ records. Paleoceanography 20:PA1003. https://doi.org/10.1029/2004PA001071
  22. Lopez, B. A., Tellier, F., Retamal-Alarcon, J. C., Perez-Araneda, K., Fierro, A. O., Macaya, E. C., Tala, F. & Thiel, M. 2017. Phylogeography of two intertidal seaweeds, Gelidium lingulatum and G. rex (Rhodophyta: Gelidiales), along the South East Pacific: patterns explained by rafting dispersal? Mar. Biol. 164:188. https://doi.org/10.1007/s00227-017-3219-5
  23. Macaya, E. C., Lopez, B., Tala, F., Tellier, F. & Thiel, M. 2016. Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change. Springer, Dordrecht, pp. 97-130.
  24. Macaya, E. C., Pacheco, S., Caceres, A. & Musleh, S. 2013. Range extension of the non-indigenous alga Mastocarpus sp. along the Southeastern Pacific coast. Rev. Biol. Mar. Oceanogr. 48:661-665. https://doi.org/10.4067/S0718-19572013000300024
  25. Maggs, C. A., Castilho, R., Foltz, D., Henzler, C., Jolly, M. T., Kelly, J., Olsen, J., Perez, K. E., Stam, W., Vainola, R., Viard, F. & Wares, J. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(11 Suppl.):S108-S122. https://doi.org/10.1890/08-0257.1
  26. Mansilla, A., Avila, M. & Yokoya, N. S. 2012. Current knowledge on biotechnological interesting seaweeds from the Magellan Region, Chile. Braz. J. Pharmacogn. 22:760-767.
  27. Miller, G. H., Brigham-Grette, J., Alley, R. B., Anderson, L., Bauch, H. A., Douglas, M. S. V., Edwards, M. E., Elias, S. A., Finney, B. P., Fitzpatrick, J. J., Funder, S. V., Herbert, T. D., Hinzman, L. D., Kaufman, D. S., MacDonald, G. M., Polyak, L., Robock, A., Serreze, M. C., Smol, J. P., Spielhagen, R., White, J. W. C., Wolfe, A. P. & Wolff, E. W. 2010. Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 29:1679-1715. https://doi.org/10.1016/j.quascirev.2010.03.001
  28. Milstein, D. & Saunders, G. W. 2012. DNA barcoding of Canadian Ahnfeltiales (Rhodophyta) reveals a new species: Ahnfeltia borealis sp. nov. Phycologia 51:247-259. https://doi.org/10.2216/11-40.1
  29. Ni Chualain, F., Maggs, C. A., Saunders, G. W. & Guiry, M. D. 2004. The invasive genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): molecular systematics, morphology, and ecophysiology of Falkenbergia isolates. J. Phycol. 40:1112-1126. https://doi.org/10.1111/j.1529-8817.2004.03135.x
  30. Rothman, M. D., Mattio, L., Anderson, R. J. & Bolton, J. J. 2017. A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the South Atlantic Ocean. J. Phycol. 53:778-789. https://doi.org/10.1111/jpy.12544
  31. Saunders, G. W. 2014. Long distance kelp rafting impacts seaweed biogeography in the Northeast Pacific: the kelp conveyor hypothesis. J. Phycol. 50:968-974. https://doi.org/10.1111/jpy.12237
  32. Saunders, G. W., Huisman, J. M., Verges, A., Kraft, G. T. & Le Gall, L. 2017. Phylogenetic analyses support recognition of ten new genera, ten new species and 16 new combinations in the family Kallymeniaceae (Gigartinales, Rhodophyta). Cryptogam. Algol. 38:79-132. https://doi.org/10.7872/crya/v38.iss2.2017.79
  33. Saunders, G. W. & McDevit, D. C. 2012. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. Methods Mol. Biol. 858:207-222. https://doi.org/10.1007/978-1-61779-591-6_10
  34. Saunders, G. W. & Moore, T. E. 2013. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28:31-43. https://doi.org/10.4490/algae.2013.28.1.031
  35. Schneider, C. W., Lane, C. E. & Saunders, G. W. 2018. A revision of the genus Cryptonemia (Halymeniaceae, Rhodophyta) in Bermuda, western Atlantic Ocean, including five new species and C. bermudensis (Collins & M. Howe) comb. Nov. Eur. J. Phycol. 53:350-368. https://doi.org/10.1080/09670262.2018.1452297
  36. Thomsen, M. S., Wernberg, T., South, P. M. & Schiel, D. R. 2016. Non-native seaweeds drive changes in marine coastal communities around the world. In Hu, Z. -M. & Fraser C. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change. Springer, Dordrecht, pp. 147-186.
  37. Villasenor-Parada, C., Pauchard, A., Ramirez, M. E. & Macaya, E. C. 2018. Macroalgas exoticas en la costa de Chile continental: patrones espaciales y temporales en el proceso de invasion. Lat. Am. J. Aquat. Res. 46:147-165. https://doi.org/10.3856/vol46-issue1-fulltext-15

Cited by

  1. Missing in the Middle: A Review of Equatorially Disjunct Marine Taxa vol.8, 2019, https://doi.org/10.3389/fmars.2021.660984