DOI QR코드

DOI QR Code

Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer

실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가

  • Kim, Hye Jin (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Material Science and Engineering, Korea University) ;
  • Kim, Jin Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
  • 김혜진 (한국세라믹기술원 도자융합기술센터) ;
  • 한규성 (한국세라믹기술원 도자융합기술센터) ;
  • 황광택 (한국세라믹기술원 도자융합기술센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 김진호 (한국세라믹기술원 도자융합기술센터)
  • Received : 2019.08.05
  • Accepted : 2019.09.18
  • Published : 2019.10.27

Abstract

As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

Keywords

References

  1. R. K. Iler, Soil Sci., 80, 86 (1955). https://doi.org/10.1097/00010694-195507000-00014
  2. C. K. Rae, L. S. Eun, L, C, Ha and K. S. Kuk, Fire Sci. Eng.(in Korean), 30, 67 (2016).
  3. G. H. Lee, E. Y. Yoon and S. J. Lee, J. of the Korean Association of Defense Industry Studies (in Korean), 16, 174 (2009).
  4. S. K. Kim, Y. S. Son and J. Y. Shin, Korean Society of Mechanical Eng. Autumn (in Korean), 5, 1063 (2004).
  5. J. R. Williams, analyze to lead-free implications for barcode labels. The Westmoreland Time On the Web. Retrieved February, 2004 from http://www.polyonics.com.
  6. H. Undrum, Jotun Coat. Mar. Protective Coat. Lab., 56, 15 (2006).
  7. Y. B. Ryu and M. S. Lee, KIM(The Korean Institute of Metals and Materials), 56, 72 (2018). https://doi.org/10.3365/KJMM.2018.56.1.72
  8. J. H. Yang and K. C. Song, Korean Chem. Eng.(in Korean), 55, 830 (2017).
  9. W. K. Kang, H. J. Kim, J. H. Kim, K. T. Hwang and G. E. Jang, J. Korean Cryst. Growth Cryst. Technol.(in Korean), 29, 71 (2019). https://doi.org/10.6111/JKCGCT.2019.29.2.071
  10. S. IsIam, P. A. Rahman, Z. Othaman, S. Riaz, M. A. Saeed and S. Naseem, Sol-Gel Technol., 68, 162 (2013). https://doi.org/10.1007/s10971-013-3147-x
  11. B. R. Yoo and D. E. Jung, Polym. Sci. Technol.(in Korean), 20, 124 (2009).
  12. T. Y. Kim, J. Jung and I. D. Jung, KSCI (The Society of Adhesion and Interface, Korea), 16, 116 (2015).
  13. B. S. Bae, Polym. Sci. Technol.(in Korean), 12, 716 (2001).
  14. R. W. Johnson, Tappi, 72, 181 (1989).
  15. W. J. MCGinnis, R. W. Hagemyer, Tappi Monograph Ser., 38, 191 (1976).
  16. W. J. Sung, M.A. D Thesis (in Korean), p.31, Yonsei University, Seoul (2008).
  17. O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre, Talanta, 50, 445 (1999). https://doi.org/10.1016/S0039-9140(99)00129-0
  18. P.B. Malla, R. E. Starr, T. Werkin and S. Devisetti, 2000 Tappi coating conference and trade fair, Tappi press, United states (2000).