DOI QR코드

DOI QR Code

Performance Analysis of Drone-type Base Station on the mmWave According to Radio Resource Management Policy

무선자원 운용방안에 따른 밀리미터파 대역에서의 드론형 기지국 성능분석

  • Jeong, Min-Woo (Directorate of Quality Management, Defense Agency for Tech. and Quality)
  • 정민우 (국방기술품질원 품질경영본부)
  • Received : 2019.09.02
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

At present, TICN has been developed and distributed for military command control. TICN is known as the 3.5G mobile communication technology based on WiBro, which shows technical limitation in the field operation situation. Accordingly, the drone-type base station platform is attracting attention as an alternative to overcome technical limitations such as difficulty in securing communication LoS and limiting expeditious network configuration. In this study, we performed simulation performance evaluation of drone-type base station operation in 28 GHz that is considered most suitable for cellular communication within mmWave frequency band. Specifically, we analyzed the changes in throughput and fairness performance according to radio resource management policies such as frequency reuse and scheduling in multi-cell topology. Through this, we tried to provide insights on the operation philosophy on drone-type base station.

현재 군 지휘통제를 위한 통신용도로 전술정보통신망 TICN이 개발되어 양산 및 보급중이나, 3.5세대 이동통신기술인 WiBro를 기반으로 하고 있어 실제 운용상황에서 기술적 한계가 드러나고 있다. 이에 따라 통신 가시선 확보 어려움 및 신속한 통신망 구성 제한과 같은 기술적 한계를 극복하기 위한 대안으로 드론형 기지국 플랫폼이 주목받고 있다. 본 연구에서는 밀리미터파 대역 중 셀룰러 통신용도로 가장 적합하다고 판단되는 28GHz 대역에서 드론형 기지국 운용을 구현한 시뮬레이션 성능평가를 수행하였다. 구체적으로는 다중 셀 토폴로지 상에서 주파수 재사용 및 스케줄링과 같은 무선자원 운용방안에 따른 기지국 전송률 및 단말 간 전송률 공정성의 변화양상을 분석하였고, 이를 통해 드론형 기지국 운용에 대한 통찰을 제공하고자 하였다.

Keywords

References

  1. J. Cho, J. Oh, D. Kim, J. Lee, and J. Kim, "Space/Air Based Mobile Network Core Technology," Information and Communication Mag., vol. 33, no. 11, 2016, pp. 65-72.
  2. K. Nam and M. Jang, "A Study on the Exploration Device of the Disaster Site Using Drones," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, 2019, pp. 579-586. https://doi.org/10.13067/JKIECS.2019.14.3.579
  3. J. Jo, "Performance Comparison among MANET Routing Protocols of Drone Patrol Network for Traffic Violation Enforcement on a Highway," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 107-112. https://doi.org/10.13067/JKIECS.2018.13.1.107
  4. S. Chandrasekharan, A. Al-Hourani, K. Gomaz, S. Kandeepan, R. Evans, L. Reynaud, and S. Scalise, "Performance Evaluation of LTE and WiFi Technologies in Aerial Networks," IEEE Globecom Workshop, Washington, DC, USA, 2016, pp. 1-7.
  5. I. Jeong, "Implementation of System Level Simulator for Performance Analysis of mmWave," M.S. Thesis, Hanyang University, 2017.
  6. M. Kulkarni, S. Singh, and J. Andrews, "Coverage and Rate Trends in Dense Urban mmWave Cellular Network," IEEE Global Communication Conf., Austin, USA, Dec. 2014, pp. 3809-3814.
  7. A. Nassar, A. Sulyman, and A. Alsanie, "Radio Capacity Estimation for millimeter wave 5G Cellular Network Using Narrow Beamwidth Antennas at the Base Station," Int. J. of Antennas and Propagation, vol. 2015, Article ID 878614, 2015, pp. 1-6.
  8. R. Ford, M. Zhang, S. Dutta, M. Mezzavilla, S. Rangan, and M. Zorzi, "A Framework for End-to-End Evaluation of 5G mmwave Cellular Networks in ns-3," Workshop on ns-3(WNS3), Seattle, WA, USA, 2016, pp. 85-92.
  9. S. Hussain, "Dynamic radio resource management in 3GPP LTE," M.S. Thesis, Blekinge Institute of Technology, 2009.
  10. C. Han, K.C. Beh, M. Nicolaou, S. Armour, and Doufexi, "Power efficient dynamic resource scheduling algorithms for LTE," IEEE Vehicular Technology Conf. Fall, Ottawa, Canada, Sept. 2010, pp. 1-5.
  11. R. Kwan, C. Leung, and J. Zhang, "Multiuser Scheduling on the Downlink of an LTE Cellular System," Research Letter in Communication, vol. 2008, Article ID 323038, 2008, pp. 1-4. https://doi.org/10.1155/2008/420478
  12. S. Schwarz and C Mehlfuhrer, "Low Complexity Approximate Maximum Throughput Scheduling for LTE," 44th Asilomar Conf. on Signal, systems and Computers, Pacific grove, USA, Nov. 2010, pp. 1563-1569.
  13. G. Yu, Z. Zhang, P. Qiu, and P. Cheng, "Fair Resource Scheduling Algorithm for Wireless OFDM Systems," Int. Conf. on Communications, Circuits and Systems, Hong Kong, China, 2005, pp. 374-377.
  14. L. Zheng, G. Youjun, T. Hui, and Z. Ping, "A Cross-Layer Fair Resource Scheduling Algorithm for OFDMA System," IEEE Region 10 Conf. (TENCON), Hong Kong, China, Nov. 2006, pp. 1-3.
  15. S. Lee, "Fixed Service Frequency Usage Trends and Implications for 5G Transmission Networks," Information and Communication Broadcasting Policy, vol. 30, no. 19, 2018, pp. 1-24.
  16. J. Lee, Y. Song, E. Choi, and J. Park, "mmWave Cellular Mobile Communication for Giga Korea 5G project," 21st Asia-Pacific Conf. on Communications, Kyoto, Japan, Oct. 2015, pp. 179-183.
  17. N. Sung and Y. Choi, "Fast Intra-Beam Switching Scheme Using Common Contention Channels in Millimeter-Wave Based Cellular Systems," Int. Conf. on Advanced Communication Technology, Pyeongchang, South Korea, Jan. 2016, pp. 760-765.
  18. R. Jain, D. Chin, and W. Hawe, "A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems," Technical Report, 1984.