DOI QR코드

DOI QR Code

Notes On Inverse Interval Graph Coloring Problems

  • Chung, Yerim (Yonsei School of Business, Yonsei University) ;
  • Kim, Hak-Jin (Yonsei School of Business, Yonsei University)
  • Received : 2019.08.27
  • Accepted : 2019.09.30
  • Published : 2019.10.31

Abstract

In this paper, we study a polynomially solvable case of the inverse interval graph coloring problem. Given an interval graph associated with a specific interval system, the inverse interval graph coloring problem is defined with the assumption that there is no proper K-coloring for the given interval graph, where K is a fixed integer. The problem is to modify the system of intervals associated with the given interval graph by shifting some of the intervals in such a way that the resulting interval graph becomes K-colorable and the total modification is minimum with respect to a certain norm. In this paper, we focus on the case K = 1 where all intervals associated with the interval graph have length 1 or 2, and interval displacement is only allowed to the righthand side with respect to its original position. To solve this problem in polynomial time, we propose a two-phase algorithm which consists of the sorting and First Fit procedure.

이 논문에서는 인터벌 그래프 컬러링 역문제 중 다항시간 안에 풀이 가능한 경우에 대해 연구한다. 인터벌 그래프의 컬러링 역문제는 주어진 인터벌 그래프를 K개의 서로 다른 색깔로 색칠할 수 없는 경우를 가정하며, 다음과 같이 정의된다. 주어진 인터벌 그래프가 K개의 색깔을 이용해서 모두 칠해질 수 있도록 인터벌 그래프와 연관되어 있는 인터벌 시스템을 최소한으로 수정하는 문제이다. 인터벌 시스템에서 두 인터벌이 부분적으로라도 서로 겹쳐있는 구간이 있을 경우 두 인터벌에 해당하는 노드들이 엣지로 연결되어 있음을 의미하고, 따라서 이 경우에는 해당 노드들을 같은 색깔을 이용해 칠할 수 없다. 따라서 겹쳐져 있는 인터벌들을 이동시켜 해당 그래프의 chromatic number를 바꿀 수 있다. 본 논문에서는 인터벌의 길이가 모두 1 또는 2이며, 인터벌의 이동이 본래 위치 대비 오른쪽으로만 가능하다는 제한이 있는 경우에 대해 집중 탐구한다. 이 문제를 해결하는 다항시간 알고리즘으로 sorting과 선입선출 방식을 사용하는 2단계 알고리즘을 제안한다.

Keywords

References

  1. M.R. Garey, and D.S. Johnson, "Computers and Intractability - A Guide to The Theory of NP-completeness," San Francisco, Freeman, January, 1979.
  2. M. Cangalovic, and J.A.M. Schreuder, "Exact Coloring Algorithms for Weighted Graphs Applied to Timetabling Problems with Lectures of Different Lengths," European Journal of Operational Research, Vol. 51, No. 2, pp. 248-258, March 1991. https://doi.org/10.1016/0377-2217(91)90254-S
  3. D. De Werra, "Some Combinatorial Models for Course Scheduling," Practice and Theory of Automated Timetabling, ser. Springer, Lecture Notes in Computer Science, Vol. 1153, pp. 296-308, March 1996.
  4. D. De Werra, "The Combinatorics of Timetabling," European Journal of Operational Research, Vol. 96, No. 3, pp. 504-513, February 1997. https://doi.org/10.1016/S0377-2217(96)00111-7
  5. R.K. Ahuja, and J.B. Orlin, "Inverse Optimization," Operations Research, Vol. 49, No. 5 pp. 771-783, October 2001. https://doi.org/10.1287/opre.49.5.771.10607
  6. R.K. Ahuja, and J.B. Orlin, "A Faster Algorithm for the Inverse Spanning Tree Problem," Journal of Algorithms, Vol. 34, No. 1, pp. 177-193, January 2000. https://doi.org/10.1006/jagm.1999.1052
  7. Y. Chung, and M. Demange, "On Inverse Traveling Salesman Problems," 4OR - A Quarterly Journal of Operations Research, Vol. 10, pp. 193-209, June 2012. https://doi.org/10.1007/s10288-011-0194-4
  8. Y. Chung, and M. Park, "Notes On Inverse Bin-Packing Problems," Information Processing Letters, Vol. 115, pp. 60-68, January 2015. https://doi.org/10.1016/j.ipl.2014.09.005
  9. Y. Chung, J.F. Culus, and M. Demange, "Inverse Chromatic Number Problems in Interval and Permutation Graphs," European Journal of Operational Research Vol. 243, pp. 763-773, 2015. https://doi.org/10.1016/j.ejor.2014.12.028
  10. C. Heuberger, "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Vol. 8, No. 3, pp. 329-361, September 2004. https://doi.org/10.1023/B:JOCO.0000038914.26975.9b
  11. M.R. Garey, R.E. Tarjan, and G.T. Wilfong, "One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Research, Vol. 13, pp. 330-348, May 1988. https://doi.org/10.1287/moor.13.2.330
  12. A.H.G. Rinnooy Kan, "Machine Scheduling Problem: Classification, Complexity and Computation," Nijhoff, The Hague, December 1976.
  13. M. Muller-Hannemann, and A. Sonnikow, "Non-Approximabi lity of Just-In-Time Scheduling," Journal of Scheduling, Vol. 12, No. 5, pp. 555-562, October 2009. https://doi.org/10.1007/s10951-009-0120-1
  14. P. Baptiste, "Scheduling Equal-Length Jobs on Identical Parallel Machines," Discrete Applied Mathematics, Vol. 103, No. 1-3, pp. 21-32, July 2000. https://doi.org/10.1016/S0166-218X(99)00238-3