DOI QR코드

DOI QR Code

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method

마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구

  • Lee, SiJin (Department of Environmental Energy Engineering, Kyonggi University)
  • Received : 2019.07.12
  • Accepted : 2019.10.07
  • Published : 2019.11.01

Abstract

For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

본 연구에서는 장파장에서 감응하는 광촉매를 개발하기 위하여 상용화된 $TiO_2$에 Ag를 도핑하여 제조하였으며 광촉매 효율을 향상시키기 위하여 귀금속의 분산을 증대시키는 마이크로에멀젼 방법을 이용하였다. 제조된 $Ag/TiO_2$의 물리적 특성은 SEM(Scanning Electron Microscopy), FE-TEM(Field Emission Transmission Electron Microscopy), DRS(Diffuse Reflectance Spectroscopy)를 통해 분석하였다. RO 16(Reactive Orange 16)에 대한 광촉매의 제거 효율은 25ppm의 RO 16을 대상으로 UV-A 영역(365nm)에서 수행하였다. Ag의 도핑방법에 의한 광촉매 효율을 비교하기 위해 볼밀링 및 딥코팅 방법으로 제조하여 광촉매 효율을 분석하였으며 광촉매 효율에 대한 Ag 및 계면활성제 함량에 대한 최적화를 진행하였다. 도핑방법에 따른 RO 16 제거효율 분석 결과, 마이크로에멀젼 방법으로 제조한 $Ag/TiO_2$의 RO 16 제거효율이 가장 높았으며 Ag 함량 2wt%, 계면활성제 0.5g에서 가장 높은 제거효율을 보였다.

Keywords

References

  1. Barakat, A. M., Schaeffer, H., Hayes, G. and Ismat-Sz'hah, S. (2005), Photocatalytic degradation of 2-chlorophenol by Co-doped $TiO_2$ nanoparticles, Applied Catalysis B: Environmental, Vol. 57, pp. 23-30. https://doi.org/10.1016/j.apcatb.2004.10.001
  2. Bojana, S., Dejan, P., Aleksandar, C., Aleksandar, M., Maja, S., Biljana, B. and Goran, B. (2017), Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method, Processing and Application of Ceramics, Vol. 11, pp. 27-38. https://doi.org/10.2298/PAC1701027S
  3. Chaker, H., Cherif-Aouali, L., Khaoulani, S., Bengueddach, A. and Fourmentin, S. (2016). Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous $TiO_2$ catalysts, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 318, pp. 142-149. https://doi.org/10.1016/j.jphotochem.2015.11.025
  4. Chavadej, S., Phuaphromyod, P., Gulari, E., Rangsunvigit, P. and Sreethawing, T. (2008), Photocatalytic degradation of 2-propanol by using Pt/$TiO_2$ prepared by microemulsion technique, Chemical Engineering Journal, Vol. 137, pp. 489-495. https://doi.org/10.1016/j.cej.2007.05.001
  5. Cozzoli, P. D., Comparelli, R., Fanizza, E., Curri, M. L., Agostiano, A. and Laub, D. (2004), Photocatalytic synthesis of silver nanoparticles stabilized by $TiO_2$ nanorods: A Semiconductor/ Metal Nanocomposite in Homogeneous Nonpolar Solution, Journal of The American Chemical Society, Vol. 126, pp. 3868-3879. https://doi.org/10.1021/ja0395846
  6. Fernandes Machado, N. R. C. and Santana, V. S. (2005), Influence of thermal treatment on the structure and photocatalytic activity of $TiO_2$ P25, Catalysis Today, Vol. 107-108, pp. 595-601. https://doi.org/10.1016/j.cattod.2005.07.022
  7. Girot, T., Colin, S. B., Devaux, X., Caer, G. L. and Mocellin, A. (2000), Modeling of the phase transformation induced by ballmilling in anatase $TiO_2$, Journal of materials synthesis and processing, Vol. 8, pp. 139-144. https://doi.org/10.1023/A:1011351807629
  8. Jaiswal, R., Patel, N., Dashora, A., Fernandes, R., Yadav, M., Edla, R., Varma, R. S., Kothari, D. C., Ahuja, B. L. and Miotello, A. (2016), Efficient Co-B-codoped $TiO_2$ photocatalyst for degradation of organic water pollutant under visible light, Applied Catalysis B: Environmental, Vol. 183, pp. 242-253. https://doi.org/10.1016/j.apcatb.2015.10.041
  9. Kulkarni, R. M., Malladi, R. S., Hanagadakar, M. S., Doddamani, M. R. and Bhat, U. K. (2016), Ag-$TiO_2$ nanoparticles for photocatalytic degradation of lomefloxacin, Desalination and Water Treatment, Vol. 57, pp. 16111-16118. https://doi.org/10.1080/19443994.2015.1076352
  10. Liang, C. H., Shumuzu, Y., Sasaki, T. and Koshozaki, N. (2005), Preparation of ultrafine $TiO_2$ nanocrystals via pulsed-laser ablation of titanium metal insurfactant solution, Applied physics A, Vol. 80, pp. 819-822. https://doi.org/10.1007/s00339-003-2489-6
  11. Momeni, M. M., Ghayeb, Y. and Ghonchegi, Z. (2015), Fabrication and characterization of copper doped $TiO_2$ nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst, Ceramics International, Vol. 41, pp. 8735-8741. https://doi.org/10.1016/j.ceramint.2015.03.094
  12. Nolan, M., Iwaszuk, A., Lucid, K. A., Carey, J. J. and Fronzi, N. (2016), Design of novel visible light active photocatalyst materials: Surface Modified $TiO_2$, Advanced Materials, Vol. 28, pp. 5425-5446. https://doi.org/10.1002/adma.201504894
  13. Qu, R., Li, C., Liu, J., Xiao, R., Pan, X., Zeng, X., Wang, Z. and Wu, J. (2018), Hydroxyl radical based photocatalytic degradation of halogenated organic contaminants and paraffin on silica gel, Environmental Science & Technology, Vol. 52, pp. 7171-7594. https://doi.org/10.1021/acs.est.8b00009
  14. Qu, R., Zhang, W., Liu, N., Zhang, Q., Liu, Y., Li, X., Wei, Y. and Feng, L. (2018), Antioil $Ag_3PO_4$ nanoparticle/polydopamine/ $Al_2O_3$ sandwich structure for complex wastewater treatment: Dynamic Catalysis under Natural Light, ACS Sustainable Chemistry & Engineering, Vol. 6, pp. 8019-8028. https://doi.org/10.1021/acssuschemeng.8b01469
  15. Tanaka, Y. and Suganuma, M. (2001), Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline $TiO_2$, Journal of Sol-Gel Science and Technology, Vol. 22, pp. 83-89. https://doi.org/10.1023/A:1011268421046
  16. Wang, P., Yap, P. S. and Lim, T. T. (2011), C-N-S tridoped $TiO_2$ for photocatalytic degradation of tetracycline under visiblelight irradiation, Applied Catalysis A: General, Vol. 399, pp. 252-261. https://doi.org/10.1016/j.apcata.2011.04.008
  17. You, X., Chen, F., Zhang, J. and Anpo, M. (2005), A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide, Catalysis letters, Vol. 102, pp. 247-250. https://doi.org/10.1007/s10562-005-5863-5
  18. Zhang, A. Y., Wang, W. K., Pei, D. N. and Yu, H. Q. (2016), Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/$TiO_2$ hybrid photocatalyst, Water Research, Vol. 92, pp. 78-86. https://doi.org/10.1016/j.watres.2016.01.045
  19. Zhang, H. and Chen, G. (2009), Potent antibacterial activities of Ag/$TiO_2$ nanocomposite powders synthesized by a one-potsolgel method, Environmental science & technology, Vol. 43, pp. 2905-2910. https://doi.org/10.1021/es803450f
  20. Zhu, M., Chen, P. and Liu, M. (2012), Ag/AgBr/Graphene Oxide Nanocomposite Synthesized via Oil/Water and Water/Oil Microemulsions: A Comparison of Sunlight Energized Plasmonic Photocatalytic Activity, Langmuir, Vol. 28, pp. 3385-3390. https://doi.org/10.1021/la204452p
  21. Zielinska, A., Kowalska, E., Sobczak, J. W., Łącka, I., Gazda, M., Ohtani, B., Hupka, J. and Zaleska, A. (2010), Silver-doped $TiO_2$ prepared by microemulsion method: Surface properties, bio-and photoactivity, Separation and Purification Technology, Vol. 72, pp. 309-318. https://doi.org/10.1016/j.seppur.2010.03.002