DOI QR코드

DOI QR Code

A Method of White Noise Reduction for Recognizing Cattle's Gulp Downing Sounds

  • Received : 2019.11.01
  • Accepted : 2019.11.19
  • Published : 2019.11.29

Abstract

In this paper, we proposed a method to measure the feed intake of cattle using the cattle's gulp downing sounds. To measure the sound of cattle's gulp downing, the recording is performed through a wearable device attached to the cattle's neck. A lot of noises are recorded according to the ranching environment. This paper proposed a method for spectralizing raw gulping sound data containing white noise and removing white noise through the signal transformation using a filter. This allows the feed intake to be measured. Through the proposed white noise reduction method, it was possible to extract only the cattle's gulp downing sound, and through this, the number of cattle's gulp downing could be measured. The proposed method in this paper makes it possible to measure cattle's feed intake easily, so that estrus prediction, health care for cattle, and feed management can be done efficiently.

본 논문에서는 소의 목 넘김 소리를 이용하여 소의 사료 섭취량을 측정할 수 있도록 하는 방법을 제안하였다. 목 넘김 소리를 측정하기 위해 소의 목에 부착한 웨어러블 장치를 통해 녹음을 하게 되는데, 목장 사육환경에 따라 많은 소음이 함께 녹음되어진다. 이처럼 백색 잡음(white noise)이 섞여 들어간 원시 사운드 데이터를 스펙트럼화 하고, 필터를 이용한 신호 변환을 통하여 백색 잡음을 제거할 수 있는 방법을 제안하였다. 이를 통해 사료 섭취량을 측정할 수 있도록 하였다. 제안된 백색 소음 제거 방법을 통하여 소의 목 넘김 소리만을 추출하는 것이 가능하였고, 이를 통하여 소의 목 넘김 횟수 측정이 가능하였다. 본 논문에서 제안된 방법을 통하여 손쉽게 소의 사료섭취량을 측정할 수 있게 됨으로써 발정기 예측, 건강관리, 그리고 사료 관리 등이 효율적으로 이루어질 수 있게 되었다.

Keywords

References

  1. J. S. Choi, "Noise Reduction Algorithm in Speech by Wiener Filter," JKIECS, Vol. 8, No. 9, pp. 1293-1298, Aug. 2013. DOI: 10.13067/JKIECS.2013.8.9.1293
  2. K. Daqrouq, I. N. Abu-Isbeih, M. Alfauri, "Speech signal enhancement using neural network and wavelet transform," 6th International Multi-Conference on Systems, Signals and Devices, pp. 1-6, Mar. 2009.
  3. X. Dang, T. Nakai, "Noise reduction using modified phase spectra and Wiener Filter," 2011 IEEE International workshop on Machine Learning for Signal Processing (MLSP) pp.1-5, Sep. 2011.
  4. J. I. Seo, E. K. Park, "De-Noising of Electroretinogram Signal using Wavelet Transforms," Journal of Korean Ophthalmic Optics Society, Vol. 17, No. 2, pp. 203-207, Jun. 2012.
  5. H. H. Lee, B. Y. Lee, "A Case Study on The Implementation of EA for The Rural Development Administration of Korea," Journal of Information Technology and Architecture, Vol. 8, No. 3, pp. 267-274, Sep. 2011.
  6. S. J. Kim, S. H. JEE, H. C. Cho, C. S. Kim, H. S. Kim, "Implementation of unmanned cow estrus detection system for improving impregnation rate," Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 9, pp. 6236-6246, Sep. 2015. DOI: 10.5762/KAIS.2015.16.9. 6236
  7. UlikeKorea Co., Inc.: LiveCare, http://www.livecare.kr/
  8. J. H. Kim, S. J. Kim, D. I. Kim, J. Y. Chung, H. S. Kim, "A Study of Spatial Approach and Policy Alternatives for Foot-and-mouth-disease Prevention," Space and Society, Vol. 24, No. 4, pp. 158-182, Dec. 2014.
  9. S. K. Son, "Cattle Shed Monitoring System based on Behavioral Characteristics of Hanwoo," Journal of The Korea Entertainment Industry Association, Vol. 8, No. 4, pp. 395-404, Dec. 2014. https://doi.org/10.21184/jkeia.2014.12.8.4.395
  10. H. T. Kwon, S. K. Lee, D. I. Kim, J. Y. Chung, H. S. Kim, "Human Computer Interaction : Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping," KIPS Transactions on Software and Data Engineering, Vol. 4, No. 3, pp. 143-150, Mar. 2015. https://doi.org/10.3745/KTSDE.2015.4.3.143
  11. S. W. Kim, S. W. Kim, "On Optimizing Dissimilarity-Based Classifications Using a DTW and Fusion Strategies," Journal of the Institute of Electronics Engineers of Korea-Computer and Information-Computer and Information, Vol. 47, No. 2, pp. 21-28, Mar. 2010.