DOI QR코드

DOI QR Code

BOUNDS OF HANKEL DETERMINANTS FOR ANALYTIC FUNCTION

  • Received : 2020.02.27
  • Accepted : 2020.11.05
  • Published : 2020.12.30

Abstract

In this paper, we give estimates of the Hankel determinant H2(1) in a novel class 𝓝 (𝜀) of analytical functions in the unit disc. In addition, the relation between the Fekete-Szegö function H2(1) and the module of the angular derivative of the analytical function p(z) at a boundary point b of the unit disk will be given. In this association, the coefficients in the Hankel determinant b2, b3 and b4 will be taken into consideration. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

Keywords

References

  1. T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126 (1) (2016), 69-78. https://doi.org/10.1007/s12044-015-0255-2
  2. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
  6. I. S. Jack, Functions starlike and convex of order α. J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Mateljevic, textitRigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.
  8. P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
  10. P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018) 1140-1144. https://doi.org/10.1515/math-2018-0096
  11. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  12. B. N. Ornek, Sharpened forms of analytic functions concerned with Hankel determinant, Korean J. Math. 27 (4) (2019), 1027-1041. https://doi.org/10.11568/kjm.2019.27.4.1027
  13. B. N. Ornek and T. Duzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65 (9) (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  14. B. N. Ornek and T. Duzenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13 (2) (2019), 145-152. https://doi.org/10.1049/iet-cds.2018.5123
  15. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992.
  16. Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
  17. J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lithuanian Mathematical Journal, DOI 10.1007/s10986-018-9397-0, In press.
  18. G. Szego and M. Fekete, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2 (1933), 85-89 https://doi.org/10.1112/jlms/s1-8.2.85
  19. D. K. Thomas and J. W. Noonan, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.1090/S0002-9947-1976-0422607-9