DOI QR코드

DOI QR Code

The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans

  • Sun, Lingmei (Department of Pharmacology, Medical School of Southeast University) ;
  • Liao, Kai (Department of Pathology and Pathophysiology, Medical School of Southeast University)
  • Received : 2020.08.11
  • Accepted : 2020.11.24
  • Published : 2020.12.28

Abstract

Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.

Keywords

References

  1. Rodrigues CF, Rodrigues ME, Henriques M. 2019. Candida sp. Infections in patients with diabetes mellitus. J. Clin. Med. 8: 76. https://doi.org/10.3390/jcm8010076
  2. Da SDA, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, et al. 2016. Cell biology of Candida albicans-host interactions. Curr. Opin. Microbiol. 34: 111-118. https://doi.org/10.1016/j.mib.2016.08.006
  3. Villasmil ML, Barbosa AD, Cunningham JL, Siniossoglou S, Nickels JJ. 2020. An Erg11 lanosterol 14-alpha-demethylase-Arv1 complex is required for Candida albicans virulence. PLoS One 15: e235746.
  4. Kean R, Ramage G. 2019. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris. mSphere 4: e00458-19.
  5. Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. 2005. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 49: 668-679. https://doi.org/10.1128/AAC.49.2.668-679.2005
  6. Gao J, Wang H, Li Z, Wong AH, Wang YZ, Guo Y, et al. 2018. Candida albicans gains azole resistance by altering sphingolipid composition. Nat. Commun. 9: 4495. https://doi.org/10.1038/s41467-018-06944-1
  7. Suchodolski J, Muraszko J, Bernat P, Krasowska A. 2019. A crucial role for ergosterol in plasma membrane composition, localisation, and activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms 7: 378. https://doi.org/10.3390/microorganisms7100378
  8. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 6: e1000939. https://doi.org/10.1371/journal.ppat.1000939
  9. Martinez-Munoz GA, Kane P. 2008. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J. Biol. Chem. 283: 20309-20319. https://doi.org/10.1074/jbc.M710470200
  10. Minematsu A, Miyazaki T, Shimamura S, Nishikawa H, Nakayama H, Takazono T, et al. 2019. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One 14: e210883.
  11. Merz AJ, Wickner WT. 2004. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. J. Cell Biol. 164: 195-206. https://doi.org/10.1083/jcb.200310105
  12. Hurst LR, Fratti RA. 2020. Lipid rafts, sphingolipids, and ergosterol in yeast vacuole fusion and maturation. Front. Cell Dev. Biol. 8: 539. https://doi.org/10.3389/fcell.2020.00539
  13. Li Y, Xu C, Zhang Q, Liu JY, Tan RX. 2005. In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases. J. Ethnopharmacol. 98: 329-333. https://doi.org/10.1016/j.jep.2005.01.020
  14. Liao K, Sun L. 2018. Roles of the Hsp90-calcineurin pathway in the antifungal activity of honokiol. J. Microbiol. Biotechnol. 28: 1086-1093. https://doi.org/10.4014/jmb.1801.01024
  15. Sun L, Ye X, Ding D, Kai L. 2019. Opposite effects of vitamin C and vitamin E on the antifungal activity of honokiol. J. Microbiol. Biotechnol. 29: 538-547. https://doi.org/10.4014/jmb.1901.01012
  16. Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e172228.
  17. Sun L, Liao K, Wang D. 2017. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12: e184003.
  18. Ward DM, Chen OP, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, et al. 2018. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J. Biol. Chem. 293: 10782-10795. https://doi.org/10.1074/jbc.RA118.001781
  19. Sun LM, Liao K, Liang S, Yu PH, Wang DY. 2015. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J. Appl. Microbiol. 118: 826-838. https://doi.org/10.1111/jam.12737
  20. Wu XZ, Cheng AX, Sun LM, Sun SJ, Lou HX. 2009. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta 1790: 770-777. https://doi.org/10.1016/j.bbagen.2009.05.002
  21. Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, et al. 2014. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob. Agents Chemother. 58: 7501-7509. https://doi.org/10.1128/AAC.03083-14
  22. Perzov N, Padler-Karavani V, Nelson H, Nelson N. 2002. Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis. J. Exp. Biol. 205: 1209-1219. https://doi.org/10.1242/jeb.205.9.1209
  23. Luna-Tapia A, DeJarnette C, Sansevere E, Reitler P, Butts A, Hevener KE, et al. 2019. The vacuolar Ca2+ ATPase pump pmc1p is required for Candida albicans pathogenesis. mSphere 4: e00715-18.
  24. Chen YL, Brand A, Morrison EL, Silao FG, Bigol UG, Malbas FJ, et al. 2011. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot. Cell 10: 803-819. https://doi.org/10.1128/EC.00310-10
  25. Gupta SS, Ton V, Beaudry V, Rulli S, Cunningham K, Rao R. 2003. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J. Biol. Chem. 278: 28831-28839. https://doi.org/10.1074/jbc.M303300200
  26. Pan J, Hu C, Yu JH. 2018. Lipid biosynthesis as an antifungal target. J. Fungi (Basel) 4: 50. https://doi.org/10.3390/jof4020050
  27. Mahto KK, Singh A, Khandelwal NK, Bhardwaj N, Jha J, Prasad R. 2014. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans. PLoS One 9: e113664. https://doi.org/10.1371/journal.pone.0113664
  28. Bhattacharya S, Esquivel BD, White TC. 2018. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9: e01291-18.
  29. Jorda T, Puig S. 2020. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 11: 795. https://doi.org/10.3390/genes11070795
  30. Andres MT, Acosta-Zaldivar M, Fierro JF. 2016. Antifungal mechanism of action of lactoferrin: identification of H+-ATPase (P3AType) as a new apoptotic-cell membrane receptor. Antimicrob. Agents Chemother. 60: 4206-4216. https://doi.org/10.1128/AAC.03130-15
  31. Kjellerup L, Gordon S, Cohrt KO, Brown WD, Fuglsang AT, Winther AL. 2017. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrob. Agents Chemother. 61: e00032-17.
  32. Padilla-Lopez S, Pearce DA. 2006. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J. Biol. Chem. 281: 10273-10280. https://doi.org/10.1074/jbc.M510625200
  33. Luna-Tapia A, Peters BM, Eberle KE, Kerns ME, Foster TP, Marrero L, et al. 2015. ERG2 and ERG24 are required for normal vacuolar physiology as well as Candida albicans pathogenicity in a murine model of disseminated but not vaginal Candidiasis. Eukaryot. Cell 14: 1006-1016. https://doi.org/10.1128/EC.00116-15
  34. Finnigan GC, Ryan M, Stevens TH. 2011. A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187: 771-783. https://doi.org/10.1534/genetics.110.125567
  35. Chung JH, Lester RL, Dickson RC. 2003. Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J. Biol. Chem. 278: 28872-28881. https://doi.org/10.1074/jbc.M300943200
  36. Kellermayer R, Aiello DP, Miseta A, Bedwell DM. 2003. Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Delta mutant of S. cerevisiae. J. Cell Sci. 116(Pt 8): 1637-1646. https://doi.org/10.1242/jcs.00372
  37. Cui J, Kaandorp JA, Sloot PM, Lloyd CM, Filatov MV. 2009. Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res. 9: 1137-1147. https://doi.org/10.1111/j.1567-1364.2009.00552.x
  38. Miller AJ, Vogg G, Sanders D. 1990. Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Natl. Acad. Sci. USA 87: 9348-9352. https://doi.org/10.1073/pnas.87.23.9348
  39. Guo Q, Sun S, Yu J, Li Y, Cao L. 2008. Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. J. Med. Microbiol. 57(Pt 4): 457-462. https://doi.org/10.1099/jmm.0.47651-0