DOI QR코드

DOI QR Code

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process

열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해

  • Lee, Gyeongryul (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, Ryubin (School of Materials Science and Engineering, Kyungpook National University) ;
  • Chung, Roy Byung Kyu (School of Materials Science and Engineering, Kyungpook National University)
  • 이경렬 (경북대학교 신소재공학부 전자재료전공) ;
  • 박류빈 (경북대학교 신소재공학부 전자재료전공) ;
  • Received : 2020.11.16
  • Accepted : 2020.11.24
  • Published : 2020.12.30

Abstract

In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.

열처리 공정을 이용하여 Si 도핑된 n형 β-Ga2O3의 전기적 특성을 변화시킨 후 전도도 변화 메커니즘에 대한 분석을 진행하였다. β-Ga2O3 시편들은 공기 또는 N2 분위기에서 800℃~1,200℃ 온도범위 내에서 30분 동안 열처리되었다. 우선 열처리로 인한 결정성 개선은 전기 전도도에 영향을 미치지 않음을 확인하였다. 하지만 공기중 열처리된 시편은 전도성이 악화된 반면 N2 열처리된 시편은 Hall 캐리어 농도와 이동도가 일부 개선되는 경향성을 보였다. X-ray photoemission spectroscopy(XPS)분석 결과, 산소공공(VO)의 농도는 가스 분위기에 상관없이 모든 열처리된 시편에서 증가하는 경향성을 보였다. 공기중 열처리된 시편에서의 VO 농도 증가는 β-Ga2O3내 VO가 Shallow donor가 아님을 보여주는 결과로 볼 수 있다. 그러므로 N2 열처리된 시편은 VO가 아닌 다른 메커니즘에 의해서 전도도가 향상되었을 가능성이 높다. Si의 경우 SiOx 결합상태를 보이는 Si의 농도가 열처리 온도 증가에 따라 증가하는 경향성을 보였다. 특이하게도 SiOx의 Si 2p peak의 면적 증가는 기존 Si의 화학적 변화 보다는 XPS 측정 영역내 Si농도 증가로 보였으며, SiOx와 전기전도도와의 상관성은 확인할 수 없었다. 결론적으로 본 연구를 통해 기존 보고된 실험결과와 달리 VO가 Deep donor임을 확인하였다. 이와 같은 β-Ga2O3 전도성의 결함 및 불순물 의존도에 대한 연구는 β-Ga2O3의 전기적 특성의 근본적인 이해를 바탕으로 물성 개선에 기여할 것으로 본다.

Keywords

References

  1. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent Progress in Ga2O3 Power Devices", Semicond. Sci. Technol., 31, 34001 (2016). https://doi.org/10.1088/0268-1242/31/3/034001
  2. M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, and S. J. Pearton, "Perspective-Opportunities and Future Directions for Ga2O3", ECS J. Solid State Sci. Technol., 6(5), 356, (2017).
  3. J. Yang, Z. Sparks, F. Ren, S. J. Pearton, and M. Tadjer, "Effect of Surface Treatments on Electrical Properties of β-Ga2O3", J. Vac. Sci. Technol. B, 36, 061201 (2018). https://doi.org/10.1116/1.5052229
  4. K.-H. Kim and S.-H. Choa, "Recent Overview on Power Semiconductor Devices and Package Module Technology", J. Microelectron. Packag. Soc., 26(3), 15 (2019).
  5. Y. Yao, S. Okur, L. A. M. Lyle, G. S. Tompa, T. Salagaj, N. Sbrockey, R. F. Davis, and L. M. Porter, "Growth and Characterization of α-, β-, and ϵ-Phases of Ga2O3 Using MOCVD and HVPE Techniques", Mater. Res. Lett., 6, 268 (2018). https://doi.org/10.1080/21663831.2018.1443978
  6. M. Baldini, Z. Galazka, and G. Wagner, "Recent Progress in the Growth of β-Ga2O3 for Power Electronics Applications", Mater. Sci. Semicond. Process., 78, 132 (2018). https://doi.org/10.1016/j.mssp.2017.10.040
  7. S. B. Reese, T. Remo, J. Green, and A. Zakutayev, "How Much Will Gallium Oxide Power Electronics Cost?", Joule, 3, 903 (2019). https://doi.org/10.1016/j.joule.2019.01.011
  8. M. H. Wong, K. Goo, Y. Morikawa, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, "All-Ion-Implanted Planar-Gate Current Aperture Vertical Ga2O3 MOSFETs with Mg-Doped Blocking Layer", Appl. Phys. Express, 11, 064102 (2018). https://doi.org/10.7567/apex.11.064102
  9. T. Harada, S. Ito, and A. Tsukazaki, "Electric Dipole Effect in PdCoO2/β-Ga2O3 Schottky Diodes for High-Temperature Operation", Sci. Adv., 5, eaax5733 (2019). https://doi.org/10.1126/sciadv.aax5733
  10. S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, "Perspective: Ga2O3 for Ultra-High Power Rectifiers and MOSFETs", J. Appl. Phys., 124, 220901 (2018). https://doi.org/10.1063/1.5062841
  11. K. Tetzner, E. B. Treidel, O. Hilt, A. Popp, S. B. Anooz, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, "Lateral 1.8 kV β-Ga2O3 MOSFET With 155 MW/㎠ Power Figure of Merit," IEEE Electron Device Lett., 40, 1503 (2019). https://doi.org/10.1109/led.2019.2930189
  12. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A Review of Ga2O3 Materials, Processing, and Devices", Appl. Phys. Rev., 5, 011301 (2018). https://doi.org/10.1063/1.5006941
  13. B. E. Kananen, N. C. Giles, L. E. Halliburton, G. K. Foundos, K. B. Chang, and K. T. Stevens, "Self-Trapped Holes in β-Ga2O3 Crystals", J. Appl. Phys., 122, 215703 (2017). https://doi.org/10.1063/1.5007095
  14. K. Park and G. Choi, "A Study on Technology Trend of Power Semiconductor Packaging using Topic Model", J. Microelectron. Packag. Soc., 27(2), 53 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.053
  15. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T. T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, F. Jomard, Y. Dumont, "P-type β-Gallium Oxide: A New Perspective for Power and Optoelectronic Devices", Mater. Today Phys., 3, 118 (2017). https://doi.org/10.1016/j.mtphys.2017.10.002
  16. J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, "Oxygen Vacancies and Donor Impurities in β-Ga2O3", Appl. Phys. Lett., 97, 142106 (2010). https://doi.org/10.1063/1.3499306
  17. M. D. McCluskey, "Point Defects in Ga2O3", J. Appl. Phys., 127, 101101 (2020). https://doi.org/10.1063/1.5142195
  18. Y. W. Huan, S. Sun, C. Gu, W. Liu, S. Ding, H. Yu, C. Xia, and D. W. Zhang , "Recent Advances in β-Ga2O3-Metal Contacts", Nanoscale Research Letters, 13, 246 (2018). https://doi.org/10.1186/s11671-018-2667-2
  19. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, "High-Quality β-Ga2O3 Single Crystals Grown by Edge-Defined Film-Fed Growth", Jpn. J. Appl. Phys., 55, 1202A2 (2016). https://doi.org/10.7567/JJAP.55.1202A2
  20. N. T. Son, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, M. Higashiwaki, A. Koukitu, S. Yamakoshi, B. Monemar, and E. Janzen, "Electronic Properties of the Residual Donor in Unintentionally Doped β-Ga2O3", J. Appl. Phys., 120, 235703 (2016). https://doi.org/10.1063/1.4972040
  21. S. Kim and J. Kim, "Electrical Properties of Thermally Annealed β-Ga2O3 Metal-Semiconductor Field-Effect Transistors with Pt/Au Schottky Contacts", ECS J. Solid State Sci. Technol., 8, Q3122 (2019). https://doi.org/10.1149/2.0231907jss
  22. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, "NIST X-ray Photoelectron Spectroscopy Database", National Instititute of Standards and Technology, (Sep. 15, 2012) from https://srdata.nist.gov/xps/Default.aspx
  23. T. Rie, K. Nomura, C. Eguchi, T. Fukizawa, K. Goto, Q. T. Thieu, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, "Thermal Stability of β-Ga2O3 in Mixed Flows of H2 and N2", Jpn. J. Appl. Phys., 54, 41102 (2015). https://doi.org/10.7567/JJAP.54.041102
  24. E. Korhonen, F. Tuomisto, D. Gogova, G. Wagner, M. Baldini, Z. Galazka, R. Schewski, and M. Albrecht, "Electrical Compensation by Ga Vacancies in Ga2O3 Thin Films", Appl. Phys. Lett., 106, 242103 (2015). https://doi.org/10.1063/1.4922814

Cited by

  1. Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석 vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.025