DOI QR코드

DOI QR Code

Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy

Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화

  • Choi, Jin-Ju (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Kang, Yubin (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Im, Byoungyong (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Lee, Chan-Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering(IAE)) ;
  • Kim, Hangoo (NEDEC) ;
  • Park, Kwang Hoon (Program in Metals and Materials Process Engineering, Inha University) ;
  • Kim, Dae-Guen (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering(IAE))
  • Received : 2019.10.08
  • Accepted : 2019.12.11
  • Published : 2020.01.27

Abstract

In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.

Keywords

References

  1. L. F. Mondolfo, Aluminum alloys : structure and properties, p.759, Elsevier, London (2013).
  2. K. R. Ravi, R. M. Pillai, K. R. Amaranathan, B. C. Pai and M. Chakraborty, J. Alloys Compd., 456, 201 (2008). https://doi.org/10.1016/j.jallcom.2007.02.038
  3. J. K. Chen, H. Y. Hung, C. F. Wang and N. K. Tang, J. Mater. Sci., 50, 5630 (2015). https://doi.org/10.1007/s10853-015-9115-9
  4. Y. H. Cho, H. W. Kim, J. M. Lee and M. S. Kim, J. Mater. Sci., 50, 7271 (2015). https://doi.org/10.1007/s10853-015-9282-8
  5. Y. L, Shen, A, Needleman and S. Suresh, Metall. Mater. Trans. A, 25, 839 (1994). https://doi.org/10.1007/BF02665460
  6. R. Chein and G. Huang, Appl. Therm. Eng., 24, 2207 (2004). https://doi.org/10.1016/j.applthermaleng.2004.03.001
  7. F. L. Tan and C. P. Tso, Appl. Therm. Eng., 24, 159 (2004). https://doi.org/10.1016/j.applthermaleng.2003.09.005
  8. D. D. L. Chung, J. Mater. Eng. Perform., 10, 56 (2001). https://doi.org/10.1361/105994901770345358
  9. H. S. Huang, Y. C. Weng, Y. W. Chang, S. L. Chen and M. T. Ke, Int. Commun. Heat Mass Transfer., 37, 140 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2009.08.012
  10. C. W. Kim, J. I. Choi, S. W. Kim, Y. C. Kim and C. S. Kang, ICAA13 Pittsburgh. Springer Cham., 237 (2012).
  11. K. Nogita, S. D. McDonald and A. K. Dahle, Mater. Trans., 45, 323 (2004). https://doi.org/10.2320/matertrans.45.323
  12. H. Qiu, H. Yan and Z. Hu, J. Mater. Res., 29, 1270 (2014). https://doi.org/10.1557/jmr.2014.113
  13. Y. RAO, H. Yan and Z. Hu, J. Rare Earths, 31, 916 (2013). https://doi.org/10.1016/S1002-0721(12)60379-2
  14. Z. HU, H. Yan and Y. Rao, Trans. Nonferrous Met. Soc. China., 23, 3228 (2013). https://doi.org/10.1016/s1003-6326(13)62857-5
  15. H. Liao, Y. Sun and G. Sun, Mater. Sci. Eng., A, 335, 62 (2002). https://doi.org/10.1016/S0921-5093(01)01949-9
  16. J. Asensio-Lozano and B. Suarez-Pena, Scr. Mater., 54, 943 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.067
  17. H. Qiu, H. Yan and Z. Hu, J. Alloys Compd., 567, 77 (2013). https://doi.org/10.1016/j.jallcom.2013.03.050
  18. H. S. Kang, W. Y. Yoon, K. H. Kim, M. H. Kim, Y. P. Yoon and I. S. Cho, Mater. Sci. Eng., A, 449, 334 (2007). https://doi.org/10.1016/j.msea.2006.02.363
  19. S. Z. Lu and A. Hellawell, J. Cryst. Growth, 73, 316 (1985). https://doi.org/10.1016/0022-0248(85)90308-2
  20. B. Suarez-Pena and J. Asensio-Lozano, Mater. Charact., 57, 218 (2006). https://doi.org/10.1016/j.matchar.2006.01.015
  21. T. Kobayashi, Mater. Sci. Eng., A, 280, 8 (2000). https://doi.org/10.1016/S0921-5093(99)00649-8
  22. C. Chong, Z. X. LIU, R. Bo, M. X. WANG, Y. G. WENG and Z. Y. LIU, Trans. Nonferrous Met. Soc. China, 17, 301 (2007). https://doi.org/10.1016/S1003-6326(07)60089-2
  23. S. Weixi, G. Bo, T. Ganfeng, L. Shiwei, H. Yi and Y. Fuxiao, J. Rare Earths, 28, 367 (2010). https://doi.org/10.1016/S1002-0721(10)60363-8
  24. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. R. Pinatel and P. J. Uggowitzer, Mater. Sci. Eng., A, 560, 481 (2013). https://doi.org/10.1016/j.msea.2012.09.093