DOI QR코드

DOI QR Code

Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins

  • Wang, Chaoming (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Liu, Juan (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Deng, Jianqiang (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Wang, Jiazhen (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Weng, Weizhao (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University) ;
  • Chu, Hongxia (Department of Cardiovascular Medicine, Yuhuangding Hospital of Yantai) ;
  • Meng, Qingguo (School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University)
  • Received : 2018.07.21
  • Accepted : 2019.01.21
  • Published : 2020.01.15

Abstract

Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.

Keywords

References

  1. Park J, Song H, Kim SK, Lee MS, Rhee DK, Lee YJ. Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res 2017;41:215-21. https://doi.org/10.1016/j.jgr.2016.08.005
  2. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  3. Garriques SS. On panaquilon, a new vegetable substance. Ann Chem Pharm 1854;90:231-4. https://doi.org/10.1002/jlac.18540900216
  4. Shibata S, Tanaka O, NagaI M, Ishit T. Studies on the constituents of Japanese and Chinese crude drugs. XII. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:762-5. https://doi.org/10.1248/cpb.11.762
  5. Gui Y, Ryu GH. Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder). J Ginseng Res 2014;38:146-53. https://doi.org/10.1016/j.jgr.2013.12.002
  6. Lee SM, Bae BS, Park HW. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  7. Lee YM, Yoon H, Park HM. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res 2017;41:113-9. https://doi.org/10.1016/j.jgr.2016.03.003
  8. Wei X, Su F, Su X, Hu TJ, Hu SH. Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia 2012;83:636-42. https://doi.org/10.1016/j.fitote.2012.01.006
  9. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies on crude drug precession.I. on the constituents of ginseng radix rubra (1). Yakugaku Zasshi 1983;103:612-22. https://doi.org/10.1248/yakushi1947.103.6_612
  10. Chen YJ, Xu RX, Ma QF, Pei YP, Xie H, Yao XS. Studies on new minor saponins isolated from leaves of panax ginseng C.A. Meyer. Acta Pharmaeeutiea Siniea 1987;22:655-89.
  11. Keung MH, Chan S, Kwok H, Ricky H, Wong NS, Yue YK. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression. J Ginseng Res 2016;40:151-9. https://doi.org/10.1016/j.jgr.2015.07.002
  12. Wu H, Liu H, Bai J. Simultaneous determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re and 20(S) protopanaxatriol in beagle dog plasma by ultra high performance liquid mass spectrometry after oral administration of a Panax notoginseng saponin preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2015;974:42-7. https://doi.org/10.1016/j.jchromb.2014.10.025
  13. Li G, Zhang XX, Lin L, Liu XN, Ma CJ, Li J, Wang CB. Preparation of ginsenoside Rg3 and protection against $H_{2}O_{2}$-induced oxidative stress in human neuroblastoma SK-N-SH cells. J Chem 2014;2014:1-6.
  14. Tang WY, Zhang Y, Gao J, Ding XY, Gao S. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. Biol Pharm Bull 2008;31:2024-7. https://doi.org/10.1248/bpb.31.2024
  15. Li XF, Lui C, Jiang ZH, Ken Y. Neuroprotective effects of ginsenosides Rh1 and Rg2 on neuronal cells. Chin Medi 2011;6:19. https://doi.org/10.1186/1749-8546-6-19
  16. Liu J, Shiono J, Shimizu K, Yu HS, Zhang CZ, Jin FX, Kondo R. 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg Med Chem Lett 2009;19:3320-3. https://doi.org/10.1016/j.bmcl.2009.04.054
  17. Liu J, Xu YR, Yang JJ, Wang WZ, Zhang JQ, Zhang RM, Meng QG. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J Ginseng Res 2017;41:373-8. https://doi.org/10.1016/j.jgr.2017.01.001
  18. Liao PY, Wang D, Zhang YJ. Dammarane-type glycosides from steamed notoginseng. J Agric Food Chem 2008;56:1751-6. https://doi.org/10.1021/jf073000s
  19. Dou DQ, Li W, Guo N, Fu R, Pei YP, Koike KZ, Nikaido T. Ginsenoside Rg8, a new dammarane-type triterpenoid saponin from roots of panax quinquefolium. Chem Pharm Bull 2006;54:751-3. https://doi.org/10.1248/cpb.54.751
  20. Xiang WJ, Guo CY, Ma L, Hu LH. Dammarane-type glycosides and long chain sesquiterpene glycosides from Gynostemma yixingense. Fitoterapia 2010;81:248-52. https://doi.org/10.1016/j.fitote.2009.09.009
  21. Yang XW, Li KK, Zhou QL. 20(S)-ginsenoside-Rf2, a novel triterpenoid saponin from stems and leaves of manax ginseng. Chin Tradit Herbal Drugs 2015;46:3137-45.
  22. In G, Ahn N-G, Bae B-S. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 2017;41:361-9. https://doi.org/10.1016/j.jgr.2016.07.004
  23. Sung WK, Sang BH, Ho P. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-9. https://doi.org/10.1016/S0021-9673(01)00869-X
  24. Wang D, Liao PY, Zhu HT, Chen KK, Xu M, Zhang YJ, Yang CR. The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 2012;132:1808-13. https://doi.org/10.1016/j.foodchem.2011.12.010
  25. Xu SX, Wang NL, Li YH. Studies on the chemical constituents of chinesered ginseng (II). Acta Pharmaceutical Sinica 1986;21:356-60.
  26. Park JD, Lee YH, Kim S. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 1998;21:615-7. https://doi.org/10.1007/BF02975384
  27. Katritzky AR, Akhmedov NG, Wang M. In: Spectral assignments and reference data. US: Springer; 2002. p. 478-80.
  28. Liu JP, Lu D, Li PY. A novel hexanordammarane glycoside from the leaves and stems of Panax quinquefolium L. Nat Prod Res 2012;26:744-8. https://doi.org/10.1080/14786419.2010.551768
  29. Shen R, Cao X, Laval S, Sun JS, Yu B. Synthesis of ocotillol-type ginsenosides. J Org Chem 2016;81:10279-94. https://doi.org/10.1021/acs.joc.6b01265
  30. Asakawa J, Kasai R, Yamasaki K, Tanaka O. 13C NMR Study of ginseng sapogenins and their related dammarane type triterpenes. Tetrahedron 1977;33:1935-9. https://doi.org/10.1016/0040-4020(77)85008-4
  31. Yang HJ, Kim JY, Kim SO, Young HY, Sang HS. Complete $^{1}H$-NMR and $^{13}C$-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides. J Ginseng Res 2014;38:194-202. https://doi.org/10.1016/j.jgr.2014.05.002
  32. Yang JJ, Xu YR, Li XL, Zhang KX, Zhang RM, Wang WZ, He XY, Meng QG, Hou GG. Synthesis and crystal structures of two C24 epimeric 3-acetyled 20(R)-ocotillol type sapogenins obtained from 20(R)-protopanaxadiol. J Chem Res 2016;40:235-8. https://doi.org/10.3184/174751916x14579531034854
  33. Liu Z, Xu YR, An XS, Yang JJ, Meng QG, Hou GG. Synthesis and crystal structure of ocotillol-type metabolites derived from (20R)-protopanaxadiol. J Chem Res 2017;41:216-20. https://doi.org/10.3184/174751917X14894997017612
  34. Lee SM. The mechanism of acid-catalyzed conversion of ginsenoside Rf and two new 25-hydroxylated ginsenosides. Phytochem Lett 2014;10:209-14. https://doi.org/10.1016/j.phytol.2014.09.009
  35. Sun CP, Gao WP, Zhao BZ, Cheng LQ. Catalytic conversion of protopanaxadiol saponins to 20(R)-ginsenoside Rg3 by tartaric acid. Chin Tradit Herbal Drugs 2013;44:1893-8.
  36. Yao H, Jin Y, Yang J. Conversion rule of rare ginsenosides produced from major ginsenosides by confined microiwave promoted. Chem J Chin Univ 2014;35:2317-23.
  37. Sun C, Gao W, Zhao B, Cheng L. Optimization of the selective preparation of 20(R)-ginsenoside Rg3 catalyzed by d,l-tartaric acid using response surface methodology. Fitoterapia 2013;84:213-21. https://doi.org/10.1016/j.fitote.2012.11.011
  38. Ma LY, Yang XW. Chemical constituents in acid hydrolysates of total saponins from stems and leaves of Panax ginseng. Chin Traditl Herbal Drugs 2015;46:2522-33.
  39. Ma XN, Chai RH, Zhao YQ. Rare constituents with anti-cancer activity extracted from hydrolytic products in saponins. Chin Traditl Herbal Drugs 2008;39:1291-4.
  40. Xu YR, Yang JJ, Liu J, Houb GG, Meng QG. Synthesis and crystal structures of C24-epimeric 20(R)-ocotillol-type saponins. Acta Crystallogr C Struct Chem 2016;72:498-503. https://doi.org/10.1107/S2053229616007270
  41. Chen YG, Lv YP, Gui SH, Wen J, Li GX. Preparation of protopanaxadiol and its epimer 20(R)-protopanaxadiol from leaf saponins of Panax Notoginseng. Fine Chemicals 2003;20:425-6. https://doi.org/10.3321/j.issn:1003-5214.2003.07.014
  42. Zhao YQ, Yuan CL, Fu YQ. Chemical studies of minor triterpene compounds isolated from the stems and leaves of panax Ginseng C. A. Meyer. Acta Pharmaceutica Sinica 1990;25:299-301.
  43. Atopkina LN, Denisenko VA. Synthesis of panaxatriol glucosides. Chem Nat Compd 2009;45:664-72. https://doi.org/10.1007/s10600-009-9435-6
  44. Atopkina LN, Denisenko VA. Glycosylation of panaxadiol. Chem Nat Compd 2011;46:892-6. https://doi.org/10.1007/s10600-011-9776-9
  45. Nguyen MD, Nguyen TN, Ryoji K. Saponins from vietnamese ginseng, panax vietnamensis collected in central vietnam. Chem Pharm Bull 1993;41:2010-4. https://doi.org/10.1248/cpb.41.2010
  46. Jia JM, Wang ZQ. Studies on the chemical constituents of the saponins from Panax quinquefolium. Chin Tradit Herbal Drugs 2009;40:1204-7.
  47. Shi SM, Li W, Cao JQ. Studies on the chemical constituents of Pseudo-ginseng. Chin Tradit Herbal Drugs 2010;41:1249-51.
  48. Zhao JM, Li N, Zhang H, Wu CF, Piao HR, Zhao YQ. Novel dammarane-type sapogenins from Panax ginseng berry and their biological activities. Bioorg Med Chem Lett 2011;21:1027-31. https://doi.org/10.1016/j.bmcl.2010.12.035
  49. Zhang SN, Zhao YQ. Crystallization separation of antitumor constituent 20(R)-25-$OCH_{3}$-PPD. Chin Tradit Herbal Drugs 2014;45:770-3.
  50. Zhang HM, Li SL, Zhang H. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73. https://doi.org/10.1016/j.jpba.2012.01.010
  51. Yang J, Li X, Sun T, Gao Y, Chen YX, Jin YR, Li Y. Semisynthesis and bioactive evaluation of oxidized products from 20(S)-ginsenoside Rg3, Rh2, protopanaxadiol (PPD) and their 20(R)-epimers as cytotoxic agents. Steroids 2016;106:26-34. https://doi.org/10.1016/j.steroids.2015.12.005
  52. Igami K, Shimojo Y, Ito H. Fermented ginseng contains an agonist of peroxisome proliferator activated receptors ${\alpha}$ and ${\gamma}$. J Med Food 2016;19:817-22. https://doi.org/10.1089/jmf.2016.3673
  53. Liu L, Zhu XM, Wang QJ. Enzymatic preparation of 20(S,R)-protopanaxadiol by transformation of 20(S,R)-Rg3 from black ginseng. Phytochemistry 2010;71:1514-20. https://doi.org/10.1016/j.phytochem.2010.05.007
  54. Chen GT, Yang M, Lu ZQ, Zhang JQ, Huang HL, Liang Y, Guan SH, Song Y. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J Nat Prod 2007;70:1203-6. https://doi.org/10.1021/np070053v
  55. Mami M, Yung CY, Kaori M, Katsuaki S, Ikuo S, Shuichi T, Keiichi S, Ichiro A. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)-and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 1995;18:1197-202. https://doi.org/10.1248/bpb.18.1197
  56. Wei JX, Chang LY, Wang JF, Edmund F, Monika J, Heinrich P, Chen WA, Eberhard B. Zwei neue dammaran-sapogenine aus den blattern von Panax notoginseng. J Med Plants Res 1982;45:167-71. https://doi.org/10.1055/s-2007-971367
  57. Chen G, Ge H, Li J. Microbial transformation of 20(R)-panaxadiol by Absidia corymbifera AS 3.3387. J Mole Catalysis B: Enzymatic 2016;123:154-9. https://doi.org/10.1016/j.molcatb.2015.11.015
  58. He B, Chen P, Yang JY, Yun Y, Zhang XC, Yang RH, Shen ZQ. Neuroprotective effect of 20(R)-ginsenoside Rg3 against transient focal cerebral ischemia in rats. Neurosci Lett 2012;526:106-11. https://doi.org/10.1016/j.neulet.2012.08.022
  59. Yu Z, Chen P, Yang GM, Yang L, Shen ZQ. Protective effects of 20(R)-ginsenoside Rg3 on human umbilical vein endothelial cell injury induced by tumor necrosis factor-a. South Chin J Cardiovasc Dis 2011;17:198-212. https://doi.org/10.3969/j.issn.1007-9688.2011.03.009
  60. Kwok HH, Guo GL, Lau JK. Stereoisomers ginsenosides-20(S)-Rg(3) and -20(R)-Rg(3) differentially induce angiogenesis through peroxisome proliferatoractivated receptor-gamma. Biochem Pharmacol 2012;83:893-902. https://doi.org/10.1016/j.bcp.2011.12.039
  61. Yue PY, Wong DY, Wu PK, Leung PY, Mak NK, Yeung HW. The angiosuppressive effects of 20(R)-ginsenoside Rg3. Biochem Pharmacol 2006;72:437-45. https://doi.org/10.1016/j.bcp.2006.04.034
  62. Choi WY, Lim HW, Lim CJ. Anti-inflammatory, antioxidative and matrix metalloproteinase inhibitory properties of 20(R)-ginsenoside Rh2 in cultured macrophages and keratinocytes. J Pharm Pharmacol 2013;65:310-6. https://doi.org/10.1111/j.2042-7158.2012.01598.x
  63. Cheng L, Sun X, Hu C, Rong J, Sun BS, Shi YM, Zhang L, Cui WG, Zhang YG. In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes. Acta Biomater 2013;9:9461-73. https://doi.org/10.1016/j.actbio.2013.07.040
  64. Yoon SJ, Park JY, Choi S, Lee JB, Jung HY, Kim TD, Yoon SR, Choi I, Shim SB, Park YG. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015;463:1184-9. https://doi.org/10.1016/j.bbrc.2015.06.080
  65. Shen LJ, Chen HL, Zhu QF, Wang YY, Wang SS, Qian J, Wang Y, Qu HB. Identification of bioactive ingredients with immuno-enhancement and antioxidative effects from Fufang-Ejiao-Syrup by LCeMSn combined with bioassays. J Pharmaceut Biomed 2016;6:363-71.
  66. Lv Q, Rong N, Liu LJ, Xu XL, Liu JT, Jin FX, Wang CM. Antitumoral activity of (20R)- and (20S)-ginsenoside Rh2 on transplanted hepatocellular carcinoma in mice. Planta Med 2016;82:705-11. https://doi.org/10.1055/s-0042-101764
  67. Qi XD, Hou JC, Yu HT, Zhang CJ. 20(S)-ginsenoside-Rh2 and 20(R)-ginsenoside-Rh2 activate $I{\kappa}B$ phosphorylation expression in human lung adenocarcinoma A549 cells. Adv Mate Res 2011;268-270:1205-10. https://doi.org/10.4028/www.scientific.net/AMR.268-270.1205
  68. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 2001;16:S28-37. https://doi.org/10.3346/jkms.2001.16.s.s28
  69. Kim D, Zheng YF, Min JS, Parka JB, Bae SH, Yoon KD, Chin YW, Oh E, Bae SK. In vitro stereoselective inhibition of ginsenosides toward UDPglucuronosyltransferase (UGT) isoforms. Toxicol Lett 2016;259:1-10. https://doi.org/10.1016/j.toxlet.2016.07.108
  70. Kim YJ, Choi WI, Jeon BN, Choi KC, Kim K, Kim TJ, Ham J, Jang HJ, Kang KS, Ko H. Stereospecific effects of ginsenoside 20-Rg3 inhibits $TGF-{\beta}1$-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology 2014;322:23-33. https://doi.org/10.1016/j.tox.2014.04.002
  71. Wu RH, Ru Q, Chen L, Ma BM, Li CY. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J Food Sci 2014;79:1430-5.
  72. Yang J, Yu X, Cai X, Chen YX, Zang HM, Li XW, Jin YG. Semisynthesis and cytotoxicity evaluation of a series of ocotillol type saponins and aglycones from 20(S)-ginsenoside Rg2, Rh1, protopanaxatriol and their 20(R)-epimers. Chem Res Chin Univ 2016;32:35-40. https://doi.org/10.1007/s40242-016-5324-2
  73. Sun BS, Zhang M, Liu LL. The effects of Rg3 on the apoptosis of melanoma B16-4A5 cells. Chin J Lab Diagn 2010;14:526-7. https://doi.org/10.3969/j.issn.1007-4287.2010.04.017
  74. Huang JY, Fan QX, Sun Y. Recent clinical observation of Cidan Capsule with ginsenoside Rg3 in advanced primary liver cancer. Chin Tradit Patent Med 2009;31:673-6.
  75. Pang H, Wang HL, Fu L, Su CG. Pharmacokinetics of 20(R)-ginsenoside Rg3 in human volunteers. J Chin Pharm Sci 2001;10:140-3.
  76. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 2002;25:58-63. https://doi.org/10.1248/bpb.25.58
  77. Peng M, Li X, Zhang T, Ding Y, Yi YX, Le J, Yang YJ, Chen XJ. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry. J Pharm Biomed Anal 2016;121:215-24. https://doi.org/10.1016/j.jpba.2016.01.020
  78. Chen GT, Yang M, Guo DA. Metabolics tudy of ginsenoside Re in rat. Chin J Chin Mat Med 2009;34:1540-3.
  79. Gui FJ, Yang XW, Li LY, Tian JM. Simultaneous enantiomer determination of 20(R)- and 20(S)-ginsenoside-Rg2 in rat plasma after intravenous administration using HPLC method. J Chromatogr B Analyt Technol Biomed Life Sci 2007;850:1-6. https://doi.org/10.1016/j.jchromb.2006.11.008

Cited by

  1. Isochlorogenic Acid A Attenuates the Progression of Liver Fibrosis Through Regulating HMGB1/TLR4/NF-κB Signaling Pathway vol.11, 2020, https://doi.org/10.3389/fphar.2020.00582
  2. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  3. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C vol.235, pp.6, 2020, https://doi.org/10.1515/ncrs-2020-0384
  4. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C vol.235, pp.6, 2020, https://doi.org/10.1515/ncrs-2020-0384
  5. Crystal structure of (E)-7-methoxy-2-((5-methoxypyridin-3-yl)methylene)-3,4- dihydronaphthalen-1(2H)-one, C18H17NO3 vol.236, pp.2, 2021, https://doi.org/10.1515/ncrs-2020-0602
  6. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives vol.45, pp.3, 2021, https://doi.org/10.1016/j.jgr.2020.12.004
  7. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2 vol.236, pp.3, 2020, https://doi.org/10.1515/ncrs-2020-0603
  8. Cerium-Promoted Ginsenosides Accumulation by Regulating Endogenous Methyl Jasmonate Biosynthesis in Hairy Roots of Panax ginseng vol.26, pp.18, 2020, https://doi.org/10.3390/molecules26185623
  9. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2 vol.236, pp.5, 2020, https://doi.org/10.1515/ncrs-2021-0209
  10. Gibberellins enhance plant growth and ginsenoside content in Panax ginseng vol.48, pp.3, 2021, https://doi.org/10.5010/jpb.2021.48.3.186
  11. Chromatographic performance of zidovudine imprinted polymers coated silica stationary phases vol.239, 2022, https://doi.org/10.1016/j.talanta.2021.123115
  12. Crystal structure of (8R,10R,14R, Z)-2-((3-Fluoropyridin-4-yl) methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6, 6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a] phenanthre vol.236, pp.6, 2020, https://doi.org/10.1515/ncrs-2021-0248
  13. Crystal structure of (8R,10R,14R,Z)-12-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3- vol.236, pp.6, 2020, https://doi.org/10.1515/ncrs-2021-0284