DOI QR코드

DOI QR Code

Till 2018: a survey of biomolecular sequences in genus Panax

  • Received : 2019.02.07
  • Accepted : 2019.06.12
  • Published : 2020.01.15

Abstract

Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.

Keywords

References

  1. Petrovska BB. Historical review of medicinal plants' usage. Pharmacognosy Reviews 2012;6(11):1-5. https://doi.org/10.4103/0973-7847.95849
  2. Saito K. Phytochemical genomicsda new trend. Current Opinion in Plant Biology 2013;16(3):373-80. https://doi.org/10.1016/j.pbi.2013.04.001
  3. Abbai R, Subramaniyam S, Mathiyalagan R, Yang DC. Functional genomic approaches in plant research. In: Hakeem KR, Malik A, Vardar-Sukan F, Ozturk M, editors. Plant bioinformatics: decoding the phyta. Cham: Springer International Publishing; 2017. p. 215-39.
  4. Yonekura-Sakakibara K, Saito K. Functional genomics for plant natural product biosynthesis. Natural Product Reports 2009;26(11):1466-87. https://doi.org/10.1039/b817077k
  5. Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: the way forward. Synth Syst Biotechnol 2016;1(2):80-8. https://doi.org/10.1016/j.synbio.2016.03.001
  6. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of nextgeneration sequencing technologies. Nature Reviews Genetics 2016;17:333. https://doi.org/10.1038/nrg.2016.49
  7. Yin P, Xu G. Current state-of-the-art of nontargeted metabolomics based on liquid chromatographyemass spectrometry with special emphasis in clinical applications. Journal of Chromatography A 2014;1374:1-13. https://doi.org/10.1016/j.chroma.2014.11.050
  8. Krumsiek J, Bartel J, Theis FJ. Computational approaches for systems metabolomics. Current Opinion in Biotechnology 2016;39:198-206. https://doi.org/10.1016/j.copbio.2016.04.009
  9. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene coexpression analysis for functional classification and geneedisease predictions. Briefings in Bioinformatics 2018;19(4):575-92.
  10. Restrepo-Perez L, Joo C, Dekker C. Paving the way to single-molecule protein sequencing. Nature Nanotechnology 2018;13(9):786-96. https://doi.org/10.1038/s41565-018-0236-6
  11. Qiao Y-J, Shang J-H, Wang D, Zhu H-T, Yang C-R, Zhang Y-J. Research of Panax spp. in Kunming Institute of Botany, CAS. Natural Products and Bioprospecting 2018;8(4):245-63. https://doi.org/10.1007/s13659-018-0176-8
  12. Yang W-z, Hu Y, Wu W-y, Ye M, Guo D-a. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7-24. https://doi.org/10.1016/j.phytochem.2014.07.012
  13. Im D-s, Nah S-y. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacologica Sinica 2013;34:1367. https://doi.org/10.1038/aps.2013.100
  14. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of Ginseng Research 2018;42(2):123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  15. Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY. Functional role of ginseng-derived compounds in cancer. Journal of Ginseng Research 2018;42(3):248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  16. Baeg I-H, So S-H. The world ginseng market and the ginseng (Korea). Journal of Ginseng Research 2013;37(1):1-7. https://doi.org/10.5142/jgr.2013.37.1
  17. Sathiyamoorthy S, In J-G, Gayathri S, Kim Y-J, Yang D-C. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Molecular Biology Reports 2010;37(7):3465-72. https://doi.org/10.1007/s11033-009-9938-z
  18. Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O, Amselem J, Bouri L, Bocs S, Klopp C, et al. Ten steps to get started in genome assembly and annotation. F1000Research 2018;7. ELIXIRe148.
  19. Choi H-IL, Kim N-H, Lee J, Choi BS, Kim KD, Park JY, Lee SC, Yang TJ. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genetic Resources and Crop Evolution 2013;60(4):1377-87. https://doi.org/10.1007/s10722-012-9926-3
  20. Wen J, Zimmer EA. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 1996;6(2):167-77. https://doi.org/10.1006/mpev.1996.0069
  21. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Molecular Genetics and Genomics 2004;271(6):709-16. https://doi.org/10.1007/s00438-004-1021-9
  22. Obae S, West T. Nuclear DNA content and genome size of American Ginseng2012. 4719-4723 p.
  23. Kim K, Nguyen VB, Dong J, Wang Y, Park JY, Lee S-C, Yang TJ. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S nrDNAs of 10 Panax-related species. Scientific Reports 2017;7:4917. https://doi.org/10.1038/s41598-017-05218-y
  24. Jang W, Kim N, Lee J, Waminal NE, Lee S, Jayakodi M, Choi HI, Park JY, Lee JE, Yang TJ. A glimpse of Panax ginseng genome structure revealed from ten BAC clone sequences obtained by SMRT sequencing platform. Plant Breeding and Biotechnology 2017;5(1):25-35. https://doi.org/10.9787/PBB.2017.5.1.25
  25. Kim N-H, Jayakodi M, Lee S-C, Choi B-S, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, et al. Genome and evolution of the shaderequiring medicinal herb Panax ginseng. Plant Biotechnology Journal 2018;0(0).
  26. Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, et al. Panax ginseng genome examination for ginsenoside biosynthesis. GigaScience 2017;6(11):1-15.
  27. Zhang D, Li W, Xia EH, Zhang QJ, Liu Y, Zhang Y, Tong Y, Zhao Y, Niu YC, Xu JH, et al. The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol Plant 2017;10(6):903-7. https://doi.org/10.1016/j.molp.2017.02.011
  28. Fan G, Fu Y, Yang B, Liu M, Zhang H, Liang X, Shi C, Ma K, Wang J, Liu W, et al. Sequencing of Panax notoginseng genome reveals genes involved in disease resistance and ginsenoside biosynthesis. bioRxiv; 2018.
  29. Chen W, Kui L, Zhang G, Zhu S, Zhang J, Wang X, Yang M, Huang H, Liu Y, Wang Y, et al. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Mol Plant 2017;10(6):899-902. https://doi.org/10.1016/j.molp.2017.02.010
  30. Wang H, Sun H, Kwon W-S, Jin H, Yang D-C. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20(2-3):41-5. https://doi.org/10.1080/19401730902856738
  31. Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 2004;11(4):247-61. https://doi.org/10.1093/dnares/11.4.247
  32. Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X, et al. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Frontiers in Plant Science 2015;5(696).
  33. Kim K, Lee S-C, Lee J, Lee HO, Joh HJ, Kim N-H, Park H-S, Yang TJ. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLOS ONE 2015;10(6):e0117159. https://doi.org/10.1371/journal.pone.0117159
  34. Han Z-j, Li W, Liu Y, Gao L-z. The complete chloroplast genome of North American ginseng, Panax quinquefolius. Mitochondrial DNA Part A 2016;27(5):3496-7. https://doi.org/10.3109/19401736.2015.1066365
  35. Nguyen B, Kim K, Kim Y-C, Lee S-C, Shin JE, Lee J, Kim NH, Jang W, Choi HI, Yang TJ. The complete chloroplast genome sequence of Panax vietnamensis Ha et Grushv (Araliaceae). Mitochondrial DNA Part A 2017;28(1):85-6. https://doi.org/10.3109/19401736.2015.1110810
  36. Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genetics 2014;15(1):138. https://doi.org/10.1186/s12863-014-0138-z
  37. Manzanilla V, Kool A, Nguyen Nhat L, Nong Van H, Le Thi Thu H, de Boer HJ. Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evolutionary Biology 2018;18(1):44. https://doi.org/10.1186/s12862-018-1160-y
  38. Shi F-X, Li M-R, Li Y-L, Jiang P, Zhang C, Pan Y-Z, Liu B, Xiao H-X, Li L-F. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biology 2015;15(1):297. https://doi.org/10.1186/s12870-015-0669-0
  39. Jiang P, Shi F-X, Li M-R, Liu B, Wen J, Xiao H-X, Li L-F. Positive selection driving cytoplasmic genome evolution of the medicinally important ginseng plant genus Panax. Frontiers in Plant Science 2018;9(359).
  40. Choi D-W, Jung J, Ha YI, Park H-W, In DS, Chung H-J, Liu JR. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports 2005;23(8):557-66. https://doi.org/10.1007/s00299-004-0845-4
  41. Kim MK, Lee B-S, In J-G, Sun H, Yoon J-H, Yang D-C. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Reports 2006;25(6):599-606. https://doi.org/10.1007/s00299-005-0095-0
  42. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports 2003;22(3):224-30. https://doi.org/10.1007/s00299-003-0678-6
  43. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Russian Journal of Genetics 2010;46(7):828-35. https://doi.org/10.1134/S1022795410070070
  44. Sathiyamoorthy S, In Jun-Gyo, Lee Byum-Soo, Kwon Woo-Seang, Yang Dong-Uk, Kim Ju-Han, Yang Deok-Chun. Insilico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C. A. Meyer. Journal of Ginseng Research. 2011;35(1):21-30. https://doi.org/10.5142/jgr.2011.35.1.021
  45. Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, et al. 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Reports 2011;30(9):1593. https://doi.org/10.1007/s00299-011-1070-6
  46. Subramaniyam S, Mathiyalagan R, Natarajan S, Kim Y-J, Jang M-g, Park J-H, Yang DC. Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene 2014;546(1):89-96. https://doi.org/10.1016/j.gene.2014.05.024
  47. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 2013;14(1):245. https://doi.org/10.1186/1471-2164-14-245
  48. Jayakodi M, Lee S-C, Lee YS, Park H-S, Kim N-H, Jang W, Lee HO, Joh HJ, Yang TJ. Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biology 2015;15:138. https://doi.org/10.1186/s12870-015-0527-0
  49. Wu B, Long Q, Gao Y, Wang Z, Shao T, Liu Y, Li Y, Ding W. Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Genomics 2015;16(1):1010. https://doi.org/10.1186/s12864-015-2151-7
  50. Liu S, Wang S, Liu M, Yang F, Zhang H, Liu S, Wang Q, Zhao Y. De novo sequencing and analysis of the transcriptome of Panax ginseng in the leafexpansion period. Molecular Medicine Reports 2016;14(2):1404-12. https://doi.org/10.3892/mmr.2016.5376
  51. Wang K, Jiang S, Sun C, Lin Y, Yin R, Wang Y, Zhang M. The spatial and temporal transcriptomic landscapes of ginseng, Panax ginseng C. A. Meyer. Scientific Reports 2015;5:18283. https://doi.org/10.1038/srep18283
  52. Gao Y, He X, Wu B, Long Q, Shao T, Wang Z, Wei J, Li Y, Ding W. Time-course transcriptome analysis reveals resistance genes of Panax ginseng induced by cylindrocarpon destructans infection using RNA-seq. PLoS One 2016;11(2):e0149408. https://doi.org/10.1371/journal.pone.0149408
  53. Cao H, Nuruzzaman M, Xiu H, Huang J, Wu K, Chen X, Li J, Wang L, Jeong JH, Park SJ, et al. Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. International Journal of Molecular Sciences 2015;16(2):3035. https://doi.org/10.3390/ijms16023035
  54. Jayakodi M, Lee S-C, Park H-S, Jang W, Lee YS, Choi B-S, Nah GJ, Kim DS, Natesan S, Sun C, et al. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. Journal of Ginseng Research 2014;38(4):278-88. https://doi.org/10.1016/j.jgr.2014.05.008
  55. Jo I-H, Lee J, Hong CE, Lee DJ, Bae W, Park S-G, Ahn YJ, Kim YC, Kim JU, Lee JW, et al. Isoform Sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes 2017;8(9):228. https://doi.org/10.3390/genes8090228
  56. Jayakodi M, Choi B-S, Lee S-C, Kim N-H, Park JY, Jang W, Lakshmanan M, Mohan SVG, Lee DY, Yang TJ. Ginseng genome database: an open-access platform for genomics of Panax ginseng. BMC Plant Biology 2018;18(1):62. https://doi.org/10.1186/s12870-018-1282-9
  57. Jayakodi M, Lee S-C, Yang T-J. Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars. Journal of Ginseng Research 2019;43(4):572-9. https://doi.org/10.1016/j.jgr.2018.05.007
  58. Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 2011;12(5):S5.
  59. Liu M-H, Yang B-R, Cheung W-F, Yang KY, Zhou H-F, Kwok JS-L, Liu GC, Li XF, Zhong S, Lee SM, et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 2015;16(1):265. https://doi.org/10.1186/s12864-015-1477-5
  60. Liu Y, Mi Y, Zhang J, Li Q, Chen L. Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Botanical Studies 2016;57(1):13. https://doi.org/10.1186/s40529-016-0128-8
  61. Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, Liu Y, Li Y, Zhang X, Yao H, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Physiologia Plantarum 2010;138(2):134-49. https://doi.org/10.1111/j.1399-3054.2009.01309.x
  62. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 2010;11(1):262. https://doi.org/10.1186/1471-2164-11-262
  63. Wu D, Austin RS, Zhou S, Brown D. The root transcriptome for North American ginseng assembled and profiled across seasonal development. BMC Genomics 2013;14(1):564. https://doi.org/10.1186/1471-2164-14-564
  64. Qi J, Sun P, Liao D, Sun T, Zhu J, Li X. Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-seq. PLoS One 2015;10(3):e0118558. https://doi.org/10.1371/journal.pone.0118558
  65. Wang J, Li J, Li J, Liu S, Wu X, Li J, Gao W. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root. Scientific Reports 2016;6:37263. https://doi.org/10.1038/srep37263
  66. Mathiyalagan R, Subramaniyam S, Natarajan S, Kim YJ, Sun MS, Kim SY, Kim YJ, Yang DC. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). Journal of Ginseng Research 2013;37(2):227-47. https://doi.org/10.5142/jgr.2013.37.227
  67. Wu B, Wang M, Ma Y, Yuan L, Lu S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved MicroRNAs in Panax ginseng. PLoS One 2012;7(9):e44385. https://doi.org/10.1371/journal.pone.0044385
  68. Wei R, Qiu D, Wilson IW, Zhao H, Lu S, Miao J, Feng S, Bai L, Wu Q, Tu D, et al. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 2015;16(1):835. https://doi.org/10.1186/s12864-015-2010-6
  69. Zheng Y, Chen K, Xu Z, Liao P, Zhang X, Liu L, Wei K, Liu D, Li YF, Sunkar R, et al. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Scientific Reports 2017;7(1):9418. https://doi.org/10.1038/s41598-017-09670-8
  70. Chen K, Liu L, Zhang X, Yuan Y, Ren S, Guo J, Wang Q, Liao P, Li S, Cui X, et al. Phased secondary small interfering RNAs in Panax notoginseng. BMC Genomics 2018;19(Suppl 1):41. https://doi.org/10.1186/s12864-017-4331-0
  71. Gurung B, Bhardwaj PK, Talukdar NC. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis. Functional & Integrative Genomics 2016;16(6):619-39. https://doi.org/10.1007/s10142-016-0517-9
  72. Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, Saito K. RNA-seq Transcriptome analysis of Panax japonicus, and its comparison with other panax species to identify potential genes involved in the saponins biosynthesis. Frontiers in Plant Science 2016;7(481).
  73. Zhang S, Wu Y, Jin J, Hu B, Zeng W, Zhu W, Zheng Y, Chen P. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochemical and Biophysical Research Communications 2015;466(3):450-5. https://doi.org/10.1016/j.bbrc.2015.09.048
  74. Zhang G-H, Ma C-H, Zhang J-J, Chen J-W, Tang Q-Y, He M-H, Xu XZ, Jiang NH, Yang SC. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 2015;16(1):159. https://doi.org/10.1186/s12864-015-1332-8
  75. Tang Q-Y, Chen G, Song W-L, Fan W, Wei K-H, He S-M, Zhang GH, Tang JR, Li Y, Lin Y, et al. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. Planta Feb 2019;249(2):393-406.
  76. Lum JH-K, Fung K-L, Cheung P-Y, Wong M-S, Lee C-H, Kwok FS-L, Leung MC, Hui PK, Lo SC. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool. Proteomics 2002;2(9):1123-30. https://doi.org/10.1002/1615-9861(200209)2:9<1123::AID-PROT1123>3.0.CO;2-S
  77. Kim SI, Kim JY, Kim EA, Kwon K-H, Kim K-W, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, et al. Proteome analysis of hairy root from Panax ginseng C. A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 2003;3(12):2379-92. https://doi.org/10.1002/pmic.200300619
  78. Nam MH, Heo EJ, Kim JY, Kim SI, Kwon K-H, Seo JB, Kwon O, Yoo JS, Park YM. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics 2003;3(12):2351-67. https://doi.org/10.1002/pmic.200300509
  79. Ma R, Sun L, Chen X, Jiang R, Sun H, Zhao D. Proteomic changes in different growth periods of ginseng roots. Plant Physiology and Biochemistry 2013;67:20-32. https://doi.org/10.1016/j.plaphy.2013.02.023
  80. Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). Frontiers in Plant Science 2016;7(1).
  81. Sun H, Liu F, Sun L, Liu J, Wang M, Chen X, Xu X, Ma R, Feng K, Jiang R. Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng. Journal of Ginseng Research 2016;40(2):113-20. https://doi.org/10.1016/j.jgr.2015.06.001
  82. Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nature Methods 2014;11:1114. https://doi.org/10.1038/nmeth.3144
  83. Martinez-Esteso MJ, Martinez-Marquez A, Selles-Marchart S, Morante-Carriel JA, Bru-Martinez R. The role of proteomics in progressing insights into plant secondary metabolism. Frontiers in Plant Science 2015;6:504.
  84. Li M, Wang X, Zhang C, Wang H, Shi F, Xiao H, Li L-F. A Simple Strategy for Development of Single Nucleotide Polymorphisms from Non-Model Species and Its Application in Panax. International Journal of Molecular Sciences 2013;14(12):24581. https://doi.org/10.3390/ijms141224581
  85. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev IV, Figueroa M, et al. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PLOS ONE 2015;10(7):e0132628. https://doi.org/10.1371/journal.pone.0132628
  86. Li M-R, Shi F-X, Li Y-L, Jiang P, Jiao L, Liu B, Li LF. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer). Genome Biology and Evolution 2017;9(9):2159-69. https://doi.org/10.1093/gbe/evx160
  87. Pan Y, Wang X, Sun G, Li F, Gong X. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae). PLoS One 2016;11(11):e0166419. https://doi.org/10.1371/journal.pone.0166419
  88. Devi BSR, Kim Y-J, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, et al. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer. Biochemistry (Moscow) 2011;76(12):1347-59. https://doi.org/10.1134/S000629791112008X
  89. Khorolragchaa A, Kim Y-J, Rahimi S, Sukweenadhi J, Jang M-G, Yang D-C. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 2014;536(1):186-92. https://doi.org/10.1016/j.gene.2013.07.077
  90. Yang J-L, Hu Z-F, Zhang T-T, Gu A-D, Gong T, Zhu P. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 2018;23(3):589. https://doi.org/10.3390/molecules23030589
  91. Nuruzzaman M, Cao H, Xiu H, Luo T, Li J, Chen X, Luo J, San Z, Luo D. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng. Acta Biochimica et Biophysica Sinica 2016;48(2):117-31. https://doi.org/10.1093/abbs/gmv122
  92. Yin R, Zhao M, Wang K, Lin Y, Wang Y, Sun C, Wang Y, Zhang M. Functional differentiation and spatial-temporal co-expression networks of the NBSencoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer. PLoS One 2017;12(7):e0181596. https://doi.org/10.1371/journal.pone.0181596
  93. Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharmaceutica Sinica B 2018;8(4):666-77. https://doi.org/10.1016/j.apsb.2018.04.004
  94. Lin Y, Wang K, Li X, Sun C, Yin R, Wang Y, Wang Y, Zhang M. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer. Molecular Genetics and Genomics 2018;293(4):845-59. https://doi.org/10.1007/s00438-018-1425-6
  95. Udall JA, Dawe RK. Is it ordered correctly? Validating genome assemblies by optical mapping. The Plant Cell 2018;30(1):7. https://doi.org/10.1105/tpc.17.00514
  96. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney D J, Elo L L, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biology 2016;17(1):13. https://doi.org/10.1186/s13059-016-0881-8
  97. Gassmann W, Appel HM, Oliver MJ. The interface between abiotic and biotic stress responses. J Exp Bot 2016;67(7):2023-4. https://doi.org/10.1093/jxb/erw110
  98. Quan L-H, Min J-W, Sathiyamoorthy S, Yang D-U, Kim Y-J, Yang D-C. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant ${\beta}$-glucosidase. Biotechnology Letters 2012;34(5):913-7. https://doi.org/10.1007/s10529-012-0849-z
  99. Kim D, Jung M, Ha JI, Lee YM, Lee S-G, Shin Y, Subramaniyam S, Oh J. Transcriptional profiles of secondary metabolite biosynthesis genes and cytochromes in the leaves of four Papaver species. Data 2018;3(4).
  100. Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science 2015;349(6252):1095. https://doi.org/10.1126/science.aac9373

Cited by

  1. Preparation of Polyethylene Glycol-Ginsenoside Rh1 and Rh2 Conjugates and Their Efficacy against Lung Cancer and Inflammation vol.24, pp.23, 2019, https://doi.org/10.3390/molecules24234367
  2. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? vol.160, 2020, https://doi.org/10.1016/j.phrs.2020.105062