DOI QR코드

DOI QR Code

Effect of Antifouling Composite Membrane on Membrane Bioreactor: A Review

방오성 복합막의 막생물반응기에 대한 영향

  • Lee, Bo Woo (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University) ;
  • Lee, Sunwoo (Bio-Convergence, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 이보우 (연세대학교 언더우드학부 생명과학공학과) ;
  • 이선우 (연세대학교 융합과학공학부 바이오융합과) ;
  • 라즈쿠마 파텔 (연세대학교 융합과학공학부 에너지환경융합과)
  • Received : 2020.02.23
  • Accepted : 2020.02.27
  • Published : 2020.02.29

Abstract

In membrane bioreactor (MBR), activated sludge degrade the biological component and membrane process separate this bacterial flocks as well the suspended solids. However, membrane fouling is one of the major issues in MBR. In this review, composite membrane used in MBR to overcome fouling is discussed. It is classified into membrane containing carbon and noncarbon materials. Introducing graphene, graphene oxide (GO) and carbon nanotubes or their modified part into pristine membrane enhance hydrophilicity of the composite membrane. Inorganic materials like silicon dioxide (SiO2) or titanium dioxide (TiO2) are also incorporated for preparing composite membrane to increase its water flux.

막 생물 반응기(MBR)에서, 활성화 된 슬러지는 생물학적 성분을 분해하고 막 공정은 이 부유 물질인 박테리아를 분리시킨다. 그러나 MBR에서의 주요 문제는 '막 오염'이다. 이 리뷰에서는 '막 오염'을 극복하기 위하여 제시된 '복합막'을 논의하고 있다. '복합막'은 탄소 또는 비탄소 재료 포함하는 막으로 분류할 수 있다. 이 복합막의 친수성은 그래핀, 산화그래핀(GO) 및 탄소 나노 튜브 또는 그들의 변형 된 부분을 깨끗한 막에 도입시킬 때 향상된다. 이산화규소(SiO2) 또는 이산화티타늄(TiO2)과 같은 무기 물질 또한 막의 물 흐름을 증가시키기 위해 복합막 형성에 통합된다.

Keywords

References

  1. P. Le-Clech, V. Chen, and T. A. G. Fane, "Fouling in membrane bioreactors used in wastewater treatment", J. Membr. Sci., 284, 17 (2006). https://doi.org/10.1016/j.memsci.2006.08.019
  2. R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, and Z. Jiang, "Antifouling membranes for sustainable water purification: Strategies and mechanisms", Chem. Soc. Rev., 45, 5888 (2016). https://doi.org/10.1039/C5CS00579E
  3. M. S. Sri Abirami Saraswathi, A. Nagendran, and D. Rana, "Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: A review", J. Mater. Chem. A, 7, 8723 (2019). https://doi.org/10.1039/C8TA11460A
  4. L. Qin, Y. Zhang, Z. Xu, and G. Zhang, "Advanced membrane bioreactors systems: New materials and hybrid process design", Bioresour. Technol., 269, 476 (2018). https://doi.org/10.1016/j.biortech.2018.08.062
  5. P. Krzeminski, L. Leverette, S. Malamis, and E. Katsou, "Membrane bioreactors - A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects", J. Membr. Sci., 527, 207 (2017). https://doi.org/10.1016/j.memsci.2016.12.010
  6. M. Aslam, R. Ahmad, and J. Kim, "Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment", Sep. Purif. Technol., 206, 279 (2018).
  7. Y. Wu, Y. Xia, X. Jing, P. Cai, A. D. Igalavithana, C. Tang, D. C. W. Tsang, and Y. S. Ok, "Recent advances in mitigating membrane biofouling using carbon-based materials", J. Hazard. Mater., 382, 120976 (2020). https://doi.org/10.1016/j.jhazmat.2019.120976
  8. C. Zhao, X. Xu, J. Chen, G. Wang, and F. Yang, "Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system", Desalination, 340, 59 (2014). https://doi.org/10.1016/j.desal.2014.02.022
  9. H. Ravishankar, S. Moazzem, and V. Jegatheesan, "Performance evaluation of A2O MBR system with graphene oxide (GO) blended polysulfone (PSf) composite membrane for treatment of high strength synthetic wastewater containing lead", Chemosphere, 234, 148 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.264
  10. H. Ravishankar, F. Roddick, D. Navaratna, and V. Jegatheesan, "Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system", J. Environ. Manage., 213, 168 (2018). https://doi.org/10.1016/j.jenvman.2018.02.063
  11. S. Zinadini, V. Vatanpour, A. A. Zinatizadeh, M. Rahimi, Z. Rahimi, and M. Kian, "Preparation and characterization of antifouling graphene oxide/polyethersulfone ultrafiltration membrane: Application in MBR for dairy wastewater treatment", J. Water Process Eng., 7, 280 (2015). https://doi.org/10.1016/j.jwpe.2015.07.005
  12. F. Beygmohammdi, H. Nourizadeh Kazerouni, Y. Jafarzadeh, H. Hazrati, and R. Yegani, "Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system", Chem. Eng. Res. Des., 154, 232 (2020). https://doi.org/10.1016/j.cherd.2019.12.016
  13. J. Lv, G. Zhang, H. Zhang, and F. Yang, "Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: Behavior and mechanism", Chem. Eng. J., 352, 765 (2018). https://doi.org/10.1016/j.cej.2018.07.088
  14. S. Ayyaru, J. Choi, and Y. H. Ahn, "Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane", Environ. Sci. Water Res. Technol., 4, 1624 (2018). https://doi.org/10.1039/C8EW00316E
  15. A. Khalid, A. Abdel-Karim, M. Ali Atieh, S. Javed, and G. McKay, "PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor", Sep. Purif. Technol., 190, 165 (2018). https://doi.org/10.1016/j.seppur.2017.08.055
  16. Z. Rahimi, A. A. L. Zinatizadeh, and S. Zinadini, "Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor", J. Ind. Eng. Chem., 29, 366 (2015). https://doi.org/10.1016/j.jiec.2015.04.017
  17. M. A. Kivi, H. Alinia, Y. Jafarzadeh, and R. Yegani, "High-density polyethylene membranes embedded with carboxylated and polyethylene glycol-grafted nanodiamond to be used in membrane bioreactors", J. Appl. Polym. Sci., 136, 47914 (2019). https://doi.org/10.1002/app.47914
  18. H. Etemadi, R. Yegani, M. Seyfollahi, and V. Babaeipour, "Preparation and performance evaluation of cellulose acetate/nanodiamond nanocomposite membrane in the treatment of pharmaceutical wastewater by membrane bioreactor", Desalin. Water Treat., 76, 98 (2017). https://doi.org/10.5004/dwt.2017.20653
  19. L. Ghalamchi, S. Aber, V. Vatanpour, and M. Kian, "A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated $Ag_3PO_4/g-C_3N_4$ nanocomposite for use in the membrane bioreactor", J. Ind. Eng. Chem., 70, 412 (2019). https://doi.org/10.1016/j.jiec.2018.11.004
  20. M. Amini, H. Etemadi, A. Akbarzadeh, and R. Yegani, "Preparation and performance evaluation of high-density polyethylene/silica nanocomposite membranes in membrane bioreactor system", Biochem. Eng. J., 127, 196 (2017). https://doi.org/10.1016/j.bej.2017.08.015
  21. H. Etemadi, M. Fonouni, and R. Yegani, "Investigation of antifouling properties of polypropylene/$TiO_2$ nanocomposite membrane under different aeration rate in membrane bioreactor system", Biotechnology Reports, 25, e00414 (2020). https://doi.org/10.1016/j.btre.2019.e00414
  22. M. Fonouni, H. Etemadi, R. Yegani, and S. Zarin, "Fouling characterization of $TiO_2$ nanoparticle embedded polypropylene membrane in oil refinery wastewater treatment using membrane bioreactor (MBR)", Desalin. Water Treat., 90, 99 (2017). https://doi.org/10.5004/dwt.2017.21360
  23. Z. X. Low, Z. Wang, S. Leong, A. Razmjou, L. F. Dumee, X. Zhang, and H. Wang, "Enhancement of the antifouling properties and filtration performance of poly(ethersulfone) ultrafiltration membranes by incorporation of nanoporous titania nanoparticles", Ind. Eng. Chem. Res., 54, 11188 (2015). https://doi.org/10.1021/acs.iecr.5b03147