DOI QR코드

DOI QR Code

Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production

바이오의약품 제조공정에서 분리막의 역할과 바이러스 필터 동향

  • Choi, Tae Hwan (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • Received : 2020.02.27
  • Accepted : 2020.02.28
  • Published : 2020.02.29

Abstract

Membranes are used in most processes of biopharmaceutical production. It is used for pretreatment of other processes, separation of impurities in the process, virus removal, control of products concentration and buffer solution exchange. Virus filters play an important role in ensuring product efficacy and stability because viral contamination of biopharmaceuticals for humans is a sensitive issue that is directly related to serious clinical outcomes. Virus filters typically have complex multilayer structures made of various polymers such as surface-modified PVDF, PES, CRC. Depending on the manufacturer, filters have different pore structures and shapes, such as symmetric or asymmetric, and is used in the form of pleated membrane, flat sheets or hollow fibers. Virus filters are exclusively supplied by few foreign companies such as Asahi Kasei, Millipore, Pall and Sartorius. Replacing virus filters can be time consuming and expensive, including approval from regulatory agencies through validation. As localization has become important due to Japan's recent export regulations, it is necessary to increase the degree of technical independence.

바이오 의약품 생산과정의 대부분 공정에서 분리막이 사용되고 있다. 분리막 공정은 다른 공정의 전처리, 공정 자체의 불순물 분리, 바이러스 제거, 목표 생성물 농도 조절 및 완충 용액 교환 등에 사용된다. 인체에 사용하는 바이오 의약품의 바이러스 오염은 심각한 임상 결과와 직결되는 민감한 문제이기 때문에 바이러스 필터는 제품의 효능과 안정성을 보장하기 위해 중요한 역할을 한다. 바이러스 필터는 일반적으로 표면 개질된 PVDF, PES, CRC 등 다양한 고분자로 만들어진 복합다층 구조를 가지고 있다. 제조업체에 따라 대칭(symmetric) 또는 비대칭(asymmetric) 등 다른 기공 구조와 형태를 가지고 있으며, 주름막, 평판 시트 또는 중공사 형태로 사용된다. 바이러스 필터는 Asahi Kasei 를 비롯해 Millipore, Pall, Sartorius 등 몇몇 해외 업체들이 독점적으로 국내에 공급하고 있다. 바이러스 필터를 대체하려면 검증작업을 통해 규제기관의 승인을 받는 등 상당한 시간과 비용이 소요된다. 최근 일본의 수출규제로 국산화가 중요해진 만큼 제거 성능 고도화 등 선제적으로 기술자립도를 높여가야 한다.

Keywords

References

  1. "Regulations on Product Approval and Examination of Biological Products", MFDS (2019).
  2. "Overview of Biological Products", FDA (CDER) (2013).
  3. "Biopharmaceutical Industry Trend Report", KoBIA (2018).
  4. D. B. Yim, "Biopharmaceutical Market Opportunity and Global Competitiveness", Samjong KPMG ERI Co., 59 (2016).
  5. P. Roberts, "Virus safety in bio products", J. Chem. Technol. Biotechnol., 59(1), 110 (1994). https://doi.org/10.1002/jctb.280590126
  6. "Points to consider in the manufacture and testing of monoclonal antibody products for human use, department of health and human services", FDA (CBER) (1996).
  7. "Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin", ICH (1999).
  8. M. Bakhshayeshirad, "Performance characteristics of virus filtration membranes: Protein fouling and virus retention", Penn State Univ. (2011).
  9. S. Liu, M. Carroll, R. Iverson, C. Valera, J. Vennari, K. Turco, R. Piper, R. Kiss, and H. Lutz, "Development and qualification of a novel virus removal filter for cell culture applications", Biotechnol. Prog., 16, 425 (2000). https://doi.org/10.1021/bp000027m
  10. "Guideline on validation of biopharmaceuticals manufacture processes", MFDS (2016).
  11. A. A. Shukla, M. R. Etzel, and S. Gadam, "Process Scale Bioseparation for the Biopharmaceutical Industry", Taylor & Francis, New York, NY, 297 (2007).
  12. W. P. Olson, "Separations Technology: Pharmaceutical and Biotechnology Applications", Interpharm Press, Buffalo Grove, IL, 122 (1995).
  13. A. S. Rathore and A. Shirke, "Recent developments in membrane-based separations in biotechnology processes: Review", Prep. Biochem. Biotechnol., 41, 398 (2011). https://doi.org/10.1080/10826068.2011.613976
  14. R. V. Reis and A. Zydney, "Bioprocess membrane technology", J. Membr. Sci., 297, 16 (2007). https://doi.org/10.1016/j.memsci.2007.02.045
  15. M. A. Serabian and A. M. Pilaro, "Safety assessment of biotechnology -derived pharmaceuticals: ICH and beyond", Toxicol. Pathol., 27, 27 (1999). https://doi.org/10.1177/019262339902700106
  16. A. S. Rosenberg, "Effects of protein aggregates: An immunologic perspective", AAPS J., 8, 501 (2006). https://doi.org/10.1208/aapsj080359
  17. "Guideline on assessing virus stability of biotechnology products from cell lines", MFDS (2002).
  18. D. Gail, "QA/QC for viral clearance", Genetic Engineering & Biotechnology News (www.genengnews.com), 26 (2006).
  19. S. Chandra, A. Groener, and F. Feldman, "Effectiveness of alternative treatments for reducing potential viral contaminants from plasma-derived products", Thromb Res., 105, 391 (2002). https://doi.org/10.1016/S0049-3848(02)00044-0
  20. P. Roberts, "Resistance of vaccinia virus to inactivation by solvent/detergent treatment of blood products", Biologicals, 28, 29 (2000). https://doi.org/10.1006/biol.1999.0236
  21. J. L. Lundblad and R. L. Seng, "Inactivation of lipid-enveloped viruses in proteins by caprylate", Vox Sang., 60, 75 (1991). https://doi.org/10.1111/j.1423-0410.1991.tb00878.x
  22. F. Brown, "An overview of the inactivation of FMDV and the implications when residual virus is present in vaccines", Dev. Biol. Stand., 75, 37 (1991).
  23. M. F. Bachmann, T. M. Kundig, C. P. Kalberer, H. Hengartner, and R. M. Zinkernagel, "Formalin inactivation of vesicular stomatitis virus impairs T-cell but not T-help-independent B-cell responses", J. Virol., 67, 3917 (1993). https://doi.org/10.1128/JVI.67.7.3917-3922.1993
  24. A. Scheidler, K. Rokos, T. Reuter, R. Ebermann, and G. Pauli, "Inactivation of viruses by beta-propiolactone in human cryo poor plasma and IgG concentrates", Biologicals, 26, 135 (1998). https://doi.org/10.1006/biol.1998.0125
  25. W. R. Alonso, S. Trukawinski, M. Savage, R. A. Tenold, and D. J. Hammond, "Viral inactivation of intramuscular immune serum globulins", Biologicals, 28, 5 (2000). https://doi.org/10.1006/biol.1999.0234
  26. S. A. Lawrence, "Beta-propiolactone: Viral inactivation in vaccines and plasma products", PDA J. Pharm. Sci. Technol., 54, 209 (2000).
  27. M. Korneyeva, J. Hotta, W. Lebing, R. S. Rosenthal, L. Franks, and S. R. Petteway Jr, "Enveloped virus inactivation by caprylate: A robust alternative to solvent-detergent treatment in plasma derived intermediates", Biologicals, 30, 153 (2002). https://doi.org/10.1006/biol.2002.0334
  28. H. Dichtelmuller, D. Rudnick, and M. Kloft, "Inactivation of lipid enveloped viruses by octanoic acid treatment of immunoglobulin solution", Biologicals, 30, 135 (2002). https://doi.org/10.1006/biol.2002.0332
  29. Parenteral Drug Association (PDA), "PDA Technical Report No. 41: Virus filtration", PDA J. Pharm. Sci. Technol., 59 (2005).
  30. M. Azari, J. A. Boose, K. E. Burhop, T. Camacho, J. Catarello, A. Darling, A. A. Ebeling, T. N. Estep, L. Pearson, S. Guzder, J. Herren, K. Ogle, J. Paine, K. Rohn, R. Sarajari, C. S. Sun, and L. Zhang, "Evaluation and validation of virus removal by ultrafiltration during the production of diaspirin crosslinked haemoglobin (DCLHb)", Biologicals, 28, 81 (2000). https://doi.org/10.1006/biol.2000.0246
  31. T. Urase, K. Yamamoto, and S. Ohgaki, "Effect of pore structure of membranes and module configuration on virus retention", J. Membr. Sci., 115, 21 (1996). https://doi.org/10.1016/0376-7388(95)00269-3
  32. I. Laursen, G. Houen, P. Hojrup, N. Brouwer, L. B. Krogsoe, L. Blou, and P. R. Hansen, "Second-generation nanofiltered plasma-derived mannan-binding lectin product: Process and characteristics", Vox Sang., 92, 338 (2007). https://doi.org/10.1111/j.1423-0410.2007.00901.x
  33. K. Furuya, K. Murai, T. Yokoyama, H. Maeno, Y. Takeda, T. Murozuka, A. Wakisaka, M. Tanifuji and T. Tomono, "Implementation of a 20-nm pore-size filter in the plasma-derived Factor VIII manufacturing process", Vox Sang., 91, 119 (2006). https://doi.org/10.1111/j.1423-0410.2006.00792.x
  34. T. R. Kreil, A. Wieser, A. Berting, M. Spruth, C. Medek, G. Pölsler, T. Gaida, T. Hämmerle, W. Teschner, H. P. Schwarz, and P. N. Barrett, "Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives", Transfusion, 46, 1143 (2006). https://doi.org/10.1111/j.1537-2995.2006.00864.x
  35. T. Burnouf and M. Radosevich, "Nanofiltration of plasma-derived biopharmaceutical products", Haemophilia, 9, 24 (2003). https://doi.org/10.1046/j.1365-2516.2003.00701.x
  36. A. Johnston, A. MacGregor, S. Borovec, M. Hattarki, K. Stuckly, D. Anderson, N. H. Goss, A. Oates, and E. Uren, "Inactivation and clearance of viruses during the manufacture of high purity factor IX", Biologicals, 28, 129 (2000). https://doi.org/10.1006/biol.1999.0242
  37. https://planova.ak-bio.com, February 25 (2020).
  38. K. H. Oshima, T. W. Comans, A. K. Highsmith, and E. W. Ades, "Removal of human immunodeficiency virus by an 0.04-micron membrane filter", J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 8, 64 (1995).
  39. K. H. Oshima, "Evans-Strickfaden T. T., Highsmith A. K., Ades E. W., The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins", Biologicals, 24, 137 (1996). https://doi.org/10.1006/biol.1996.0018
  40. K. H. Oshima, T. T. Evans-Strickfaden, and A. K. Highsmith, "Comparison of filtration properties of hepatitis B virus, hepatitis C virus and simian virus 40 using a polyvinylidene fluoride membrane filter", Vox Sang., 75, 181 (1998). https://doi.org/10.1046/j.1423-0410.1998.7530181.x
  41. H. Aranha-Creado, K. Oshima, S. Jafari, G. Howard, and H. Brandwein, "Virus retention by a hydrophilic triple-layer PVDF microporous membrane filter", PDA J. Pharm. Sci. Technol., 51, 119 (1997).
  42. H. Aranha-Creado, J. Peterson, and P. Y. Huang, "Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter", Biologicals, 26, 167 (1998). https://doi.org/10.1006/biol.1998.0130
  43. G. Miesegaes, S. Lute, H. Aranha, and K. Brorson, "Virus retentive filters", in: M. C. Flickinger(Ed.), Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Wiley, New York, USA (2010)
  44. https://shop.pall.com/us/en/biotech/filtration, February 25 (2020).
  45. A. DiLeo, A. Allegrezza, and S. Builder, "High resolution removal of virus from protein solutions using a membrane of unique structure", Nat. Biotechnol., 10, 182 (1992). https://doi.org/10.1038/nbt0292-182
  46. A. J. DiLeo, D. A. Vacante, E, and F. Deane, "Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification", Biologicals, 21, 275 (1993). https://doi.org/10.1006/biol.1993.1085
  47. A. J. DiLeo, D. A. Vacante, E, and F. Deane, "Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Model qualification and process simulation", Biologicals, 21, 287 (1993). https://doi.org/10.1006/biol.1993.1086
  48. B. Hughes, A. Bradburne, A. Sheppard, and D. Young, "Evaluation of anti-viral filters", Dev. Biol. Stand., 88, 91 (1996).
  49. J. Parkkinen, A. Rahola, L. von Bonsdorff, H. Tolo, and E. Torma, "A modified caprylic acid method for manufacturing immunoglobulin G from human plasma with high yield and efficient virus clearance", Vox Sang., 90, 97 (2006). https://doi.org/10.1111/j.1423-0410.2005.00731.x
  50. I. S. Kim, Y. W. Choi, Y. Kang, H. M. Sung, K. W. Sohn, and Y. S. Kim, "Improvement of virus safety of an antihemophilc factor IX by virus filtration process", J. Microbiol. Biotechnol., 18, 1317 (2008).
  51. J. X. Zhou, F. Solamo, T. Hong, M. Shearer, and T. Tressel, "Viral clearance using disposable systems in monoclonal antibody commercial downstream processing", Biotechnol. Bioeng., 100, 488 (2008). https://doi.org/10.1002/bit.21781
  52. H. Brough, C. Antoniou, J. Carter, J. Jakubik, Y. Xu, and H. Lutz, "Performance of a novel viresolve NFR virus filter", Biotechnol. Prog., 18, 782 (2002). https://doi.org/10.1021/bp010193+
  53. https://www.merckmillipore.com/KR/ko/, February 25 (2020).
  54. K. Tarrach, A. Meyer, J. E. Dathe, and H. Sun, "The effect of flux decay on a 20 nm nanofilter for virus retention", Biopharm Int., 20, 58 (2007).
  55. https://www.sartorius.com, February 25 (2020).
  56. S. Emory, "Principles of integrity testing hydrophilic microporous membranes", Pharm. Technol., 13, 68 (1989).
  57. A. Depalma, "Making Filtration Work", Bioprocess Int., 17, 4 (2019).
  58. J. Bartels, A. G. Batista, S. Kroll, M. Maas, and K. Rezwan, "Hydrophobic ceramic capillary membranes for versatile virus filtration", J. Membr. Sci., 570-571, 85 (2019). https://doi.org/10.1016/j.memsci.2018.10.022