DOI QR코드

DOI QR Code

Optimum Design of Pore-filled Anion-exchange Membranes for Efficient All-vanadium Redox Flow Batteries

효율적인 전 바나듐 레독스 흐름 전지를 위한 세공충진 음이온교환막의 최적 설계

  • Kim, Yu-Jin (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 김유진 (상명대학교 그린화학공학과) ;
  • 김도형 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2020.01.14
  • Accepted : 2020.01.27
  • Published : 2020.02.29

Abstract

In this study, we have established the optimum design condition of pore-filled anion-exchange membrane for all-vanadium redox flow battery (VRFB). From the experimental results, it was proven that the membrane design factors that have the greatest influence on the charge-discharge performance of VRFB are the ion exchange capacity, the porosity of substrate film, and the crosslinking degree. That is, the ohmic loss and the crossover of active materials in VRFB were shown to be determined by the above factors. In addition, two methods, i.e. reducing the ion exchange capacity at low crosslinking degree and increasing the crosslinking degree at high ion exchange capacity, were investigated in the preparation of pore-filled anion-exchange membranes. As a result, it was found that optimizing the crosslinking degree at sufficiently high ion exchange capacity is more desirable to achieving high VRFB charge-discharge performances.

본 연구에서는 전 바나듐 레독스 흐름전지(VRFB)에 적용하기 위한 세공충진 음이온교환막의 최적 설계 조건을 도출하고자 하였다. 실험결과를 통해 VRFB 충방전 성능에 가장 지대한 영향을 미치는 막 설계인자는 이온교환용량, 지지체의 기공율 및 가교도임을 확인할 수 있었다. 즉, 상기 인자들에 의해 VRFB의 ohmic loss와 활물질의 crossover가 결정되었다. 또한 세공충진 음이온교환막의 제조 시 낮은 가교도에서 이온교환용량을 감소시키는 것과 높은 이온교환용량에서 가교도를 증가시키는 두 가지 방안을 검토하였다. 그 결과 충분히 높은 이온교환용량에서 가교도를 최적화 하는 것이 VRFB 충방전 성능 관점에서 바람직한 것으로 판단되었다.

Keywords

References

  1. C. S. Jin, "Battery for large scale energy storage", KIC News, 13, 23 (2010).
  2. M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 7, 219 (1989). https://doi.org/10.1016/0378-7753(89)80037-0
  3. K. W. Sung, S. H. Shin, and S. H. Moon, "Characterization of commercial membranes for non-aqueous vanadium redox flow battery", Korean Chem. Eng. Res., 51, 615 (2013). https://doi.org/10.9713/kcer.2013.51.5.615
  4. A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
  5. G. L. Soloveichik, "Flow batteries: Current status and trends", Chem. Rev., 115, 11533 (2015). https://doi.org/10.1021/cr500720t
  6. H. Prifti, A. Parasuraman, S. Windardi, T. M. Lim, and M. Skyllas-Kazacos, "Membranes for redox flow battery applications", Membranes, 2, 275 (2012). https://doi.org/10.3390/membranes2020275
  7. Y. M. Baek, N. S. Kwak, T. S. Hwang, Y. Baek, N.-S. Kwak, and T. S. Hwang, "Synthesis and characterization of vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate (VBC-co-St-co-HEA) anion-exchange membrane for all-vanadium redox flow battery", Polymer Korea, 35, 586 (2011). https://doi.org/10.7317/pk.2011.35.6.586
  8. L. Li, S. Kim, G. Xia, and Z. G. Yang, "Advanced redox flow batteries for stationary electrical energy storage", J. Electrochem. Soc., 163, 1 (2012).
  9. A. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, "Vanadium redox flow batteries: A technology review", Int. J. Energy Res., 2015, 889 (2014).
  10. C. H. Bae, E. P. L. Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002). https://doi.org/10.1016/S0013-4686(02)00649-7
  11. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
  12. P. K. Leung, C. Ponce de Leon, and F. C. Walsh, "The influence of operational parameters on the performance of an undivided zinc-cerium flow battery", Electrochem. Acta, 80, 7 (2012). https://doi.org/10.1016/j.electacta.2012.06.074
  13. H. Vafiadis and M. Skyllas-Kazacos, "Evaluation of membranes for the novel vanadium bromine redox flow cell", J. Memb. Sci., 279, 394 (2006). https://doi.org/10.1016/j.memsci.2005.12.028
  14. M. Kazacos, M. Cheng, and M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., 20, 463 (1990). https://doi.org/10.1007/BF01076057
  15. A. Z. Weber, M. M. Mench, J. P. Meyers, P. M. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem., 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
  16. D. Y. Ha, S. K. Kim, D. H. Jung, S. Y. Lim, D. H. Baek, B. R. Lee, and G. Y. Lee, "Effect of carbon felt oxidation methods on the electrode performance of vanadium redox flow battery", J. Korean Electrochem. Soc., 12, 263 (2009). https://doi.org/10.5229/JKES.2009.12.3.263
  17. H. S. Choi, Y. H. Oh, C. H. Ryu, and G. J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Institute Chem. Eng., 45, 2920 (2014). https://doi.org/10.1016/j.jtice.2014.08.032
  18. G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  19. D. H. Kim, S. J. Seo, M. J. Lee, J. S. Park, S. H. Moon, Y. S. Kang, Y. W. Choi, and M. S. Kang, "Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles", J. Membr. Sci., 454, 44 (2014). https://doi.org/10.1016/j.memsci.2013.11.051
  20. D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimizing membrane thickness for vanadium redox flow batteries", J. Membr. Sci., 437, 108 (2013). https://doi.org/10.1016/j.memsci.2013.02.007