DOI QR코드

DOI QR Code

Effect of Nafion Chain Length on Proton Transport as a Binder Material

수소이온 전달 특성에 미치는 바인더로 활용 가능한 나피온의 주쇄 길이의 영향

  • Kang, Hoseong (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
  • 강호성 (경남과학기술대학교(GNTECH) 미래융복합기술연구소 에너지공학과) ;
  • 박치훈 (경남과학기술대학교(GNTECH) 미래융복합기술연구소 에너지공학과)
  • Received : 2020.02.04
  • Accepted : 2020.02.11
  • Published : 2020.02.29

Abstract

The purpose of this study was to compare the water channel morphology and the proton conductivity by changing the number of repeating units of the polymer backbone of PEMs, and to present a criterion for selecting an appropriate polymer model for MD simulation. In the model with the shortest polymer main chain, the movement of the main chain and the sulfonic acid group was observed to be large, but no change in the water channel morphology was found. In addition, due to the nature of the proton transport ability that is most affected by the water channel morphology, the proton conductivity did not show a significant correlation with the length of the polymer backbone. These results provide important information, particularly for the preparation of ionomers for binders. In general, a low molecular weight polymer electrolyte material is used for a binder ionomer. Since the movement of the main chain/sulfonic acid group is improved, it can play a role of enclosing the catalyst layer well. However, there is no change in its proton conducting performance. In conclusion, the preparation of ionomers for binders will require molecular weight and structure design with a focus on physical properties rather than proton transfer performance.

본 연구에서는 고분자 전해질막을 구성하고 있는 고분자 주쇄의 반복단위 개수를 변경해 가며 수화채널 모폴로지와 이온전도도의 변화를 비교하였고, 최종적으로 분자동역학 전산모사 수행 시에 적정한 고분자 모델을 선정하기 위한 기준을 제시하고자 하였다. 고분자 주쇄의 길이가 가장 짧은 모델에서 주쇄 및 술폰산기의 움직임이 커지는 것을 관찰할 수 있었지만, 수화채널 모폴로지는 특별한 상관관계를 발견할 수 없었다. 또한, 수화채널 모폴로지에 가장 큰 영향을 받는 수소이온 전달 능력의 특성 상, 수소이온 전도도에서도 고분자 주쇄의 길이와 큰 상관관계를 보이지는 않았다. 이러한 결과는 특히 바인더용 이오노머 제조에 대한 중요한 정보를 제공한다. 일반적으로 바인더용 이오노머의 경우 고분자 전해질막 소재를 저분자량으로 합성하여 사용하게 되는데, 이때 주쇄/술폰산기의 움직임이 향상되므로 촉매층을 잘 둘러싸는 역할을 할 수 있는 반면에, 수소이온 전달 능력 자체에 있어서는 특별한 변화가 없을 것을 예상할 수 있다. 결론적으로, 바인더용 이오노머 제조시에는 수소이온 전달 성능보다는 물성에 좀 더 초점을 맞추어 분자량 및 구조 설계가 필요할 것이다.

Keywords

References

  1. J. Larminie and A. Dicks, "Fuel Cell Systems Explained", pp. 1-5, Wiley, West Sussex (2003).
  2. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  3. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
  4. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
  5. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  6. J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly(arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.146
  7. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  8. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  9. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  10. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006). https://doi.org/10.1016/j.polymer.2006.02.032
  11. N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534 (2009). https://doi.org/10.1016/j.polymer.2008.11.029
  12. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  13. K. Hoseong and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.67
  14. J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.358
  15. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  16. J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2$, $O_2$, $N_2$, NO, CO, $CO_2$, $NO_2$, $CS_2$, and $SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000). https://doi.org/10.1021/jp992913p
  17. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1 (2016). https://doi.org/10.1007/s00894-015-2876-x
  18. K. D. Kreuer, "Proton conductivity: Materials and applications", Chem. Mater., 8, 610 (1996). https://doi.org/10.1021/cm950192a
  19. M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, "Mechanisms of proton conductance in polymer electrolyte membranes", J. Phys. Chem. B, 105, 3646 (2001). https://doi.org/10.1021/jp003182s
  20. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  21. S. Cukierman, "Et tu, Grotthuss! and other unfinished stories", Biochim. Biophys. Acta, 1457, 876 (2006). https://doi.org/10.1016/j.bbabio.2005.12.001