DOI QR코드

DOI QR Code

Relationship between Concentration of Alcian Blue and Mechanical Properties on High Current Density Copper Electroplating

고전류밀도 구리도금공정에서 알시안블루(Alcian Blue) 농도와 기계적 특성과의 상관관계

  • Woo, Tae-Gyu (Graduate School of Flexible and Printable Electronics, Jeonbuk National University)
  • 우태규 (전북대학교 유연인쇄전자전문대학원)
  • Received : 2019.12.06
  • Accepted : 2020.03.13
  • Published : 2020.04.27

Abstract

The current density in copper electroplating is directly related with the productivity; then, to increase the productivity, an increase in current density is required. This study is based on an analysis of changes in surface characteristics and mechanical properties by applying the addition of Alcian Blue (AB, C56H68Cl4CuN16S4). The amount of Alcian Blue in the electrolytes is changed from 0 to 100 ppm. When Alcian Blue is added at 20 ppm, a seed layer is formed homogeneously on the surface at the initial stage of nucleation. However, crystals electroplated in electrolytes with more than 40 ppm of Alcian Blue are observed to have growth in the vertical direction on the surface and the shapes are like pyramids. This tendency of initial nucleation formation causes protrusions when the thickness of copper foil is 12 ㎛. Thereafter, a lot of extrusions are observed on the group of 100 ppm Alcian Blue. Tensile strength of groups with added Alcian Blue increased by more than 140% compare to no-addition group, but elongation is reduced. These results are due to the decrease of crystal size and changes of prior crystal growth plane from (111) and (200) to (220) due to Alcian Blue.

Keywords

References

  1. S. H. Huh, H. J. Jeon, H. S. Chu, Y. S. Song, S. K. Lee, H. J. Lee and U. H. Lee, Korean J. Met. Mater., 52, 943 (2014). https://doi.org/10.3365/KJMM.2014.52.11.943
  2. K. H. Hwang, K. I. Lee, S. K. Joo and T. Kang, J. Korean Associ. Cryst. Growth, 1, 79 (1991).
  3. S. M. Sze, VLSI Technology, 2nd Ed, p. 373, NcGraw Hill (1988).
  4. S. H. Lee and N. J. Park, Korean J. Met. Mater., 45, 377 (2007).
  5. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevittt, W. Motsifft, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Lucet and J. Slatteryt, IEEE Int. Electron Devices Meet. Digest, p.773 (1997).
  6. H. C. Kim and J. J. Kim, Korean Chem. Eng. Res., 54, 723 (2016). https://doi.org/10.9713/kcer.2016.54.6.723
  7. J. G. Ryan, R. M. Geffken, N. R. Poulin and J. R. Paraszczak, IBM J. Res. Dev., 39, 371 (1995). https://doi.org/10.1147/rd.394.0371
  8. P. V. Brande and R. Winand, Surf. Coat. Technol., 52, 1 (1992). https://doi.org/10.1016/0257-8972(92)90365-H
  9. Z. Zhou and T. J. O'Keefe, J. Appl. Electrochem., 28, 461 (1998). https://doi.org/10.1023/A:1003209009910
  10. M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre and P. Klauss, Phys. Status Solidi A, 187, 91 (2001). https://doi.org/10.1002/1521-396X(200109)187:1<91::AID-PSSA91>3.0.CO;2-9
  11. T. G. Woo, I. S. Park, H. W. Lee and K. W. Seol, Korean J. Mater. Res., 16, 11 (2006). https://doi.org/10.3740/MRSK.2006.16.1.011
  12. J. J. Yang, Y. L. Huang and K. W. Xu, Surf. Coat. Technol., 201, 5574 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.227
  13. V. A. Vas'ko, I. Tabakovic, S. C. Riemer and M. T. Kief, Microelectron. Eng., 75, 71 (2004). https://doi.org/10.1016/j.mee.2003.10.008
  14. C. M. Park, U. H. Lee and H. J. Lee, Korean J. Met. Mater., 54, 469 (2016). https://doi.org/10.3365/KJMM.2016.54.6.469
  15. S. K. Kim and J. J. Kim, Electrochem. Solid State Lett., 7, C98 (2004). https://doi.org/10.1149/1.1777552
  16. S. K. Cho, S. K. Kim and J. J. Kim, J. Electrochem. Soc., 152, C330 (2005). https://doi.org/10.1149/1.1891645
  17. S. Choe, M. J. Kim, H. C. Kim, S. K. Cho, S. H. Ahn, S. K. Kim and J. J. Kim, J. Electrochem. Soc., 160, D3179 (2013). https://doi.org/10.1149/2.032312jes
  18. M. H. Kim, H. R. Cha, C. S. Choi, H. S. Kim and D. Y. Lee, Korean J. Met. Mater., 48, 757 (2010). https://doi.org/10.3365/kjmm.2010.48.08.757
  19. J. W. Gallaway, M. J. Willey and A. C. West, J. Electrochem. Soc., 156, D287 (2009). https://doi.org/10.1149/1.3142422
  20. Y. Cao, P. Taephaisitphongse, R. Chalupa and A. C. West, J. Electrochem. Soc., 148, C466 (2001). https://doi.org/10.1149/1.1377898
  21. S. K. Kim, D. Josell and T. Moffat, J. Electrochem. Soc., 153, C616 (2006). https://doi.org/10.1149/1.2216356
  22. Y. H. Jeong, Master Thesis(in Korean), p. 11-40, Dong-A University, Busan (2016).
  23. T. S. Kuan, C. K. Inoki, G. S. Oehrlein, K. Rose, Y. P. Zhao, G. C. Wang, S. M. Rossnagel and C. Cabral, Mater. Res. Soc. Symp. Proc., 612, D7.1.1 (2000).
  24. P. Stantke, JOM, 54, 19 (2002). https://doi.org/10.1007/BF02701651
  25. S. Yoshimura, S. Yoshihara, T. Shirakashi and E. Sato, Electrochim. Acta, 39, 589 (1994). https://doi.org/10.1016/0013-4686(94)80105-3
  26. A. Gittis and D. Dobrev, Thin solid Films, 130, 335 (1985). https://doi.org/10.1016/0040-6090(85)90364-5
  27. M. H. Kim, H. R. Cha, C. S. Choi, J. M. Kim and D. Y. Lee, Korean J. Met. Mater., 48, 884 (2010). https://doi.org/10.3365/KJMM.2010.48.10.884
  28. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, third ed., p.170, Pearson Education, New Jersey (2001).
  29. S. H. Lee and N. J. Park, Korean J. Met. Mater., 44, 556 (2006).