DOI QR코드

DOI QR Code

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process

RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성

  • Son, Jeongil (Department of Materials Engineering, Soonchunhyang University) ;
  • Kim, Gwangsoo (Department of Materials Engineering, Soonchunhyang University)
  • 손정일 (순천향대학교 디스플레이.신소재공학과) ;
  • 김광수 (순천향대학교 디스플레이.신소재공학과)
  • Received : 2020.02.20
  • Accepted : 2020.03.18
  • Published : 2020.04.27

Abstract

Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

Keywords

References

  1. H. W. Ahn, J. H. Oh, S. G. Kweon and S. D. Choi, J. Korean Soc. Manuf. Process. Eng., 13, 145 (2014). https://doi.org/10.14775/ksmpe.2014.13.6.145
  2. S. H. Lee, H. E. Song, G. H Kang, H. K. Ahn and D. Y. Han, Korean Inst. Electr. Eng., 62, 76 (2013)(in Korean).
  3. K. S. Kim, G. H. Kang and G. J. Yu. J(in Korean), Kor. Sol. Energ. Soc., 28, 5 (2008).
  4. D. Y. Kong, D. H. Kim, S. H. Yun, Y. H. Bae, I. S. Yu, C. S. Cho and J. H. Lee (in Korean), J. Korean Vacuum Soc., 20, 233 (2011). https://doi.org/10.5757/JKVS.2011.20.3.233
  5. Shatter proof film process, korvan Home Page, retrieved November, 2007 from korvanchem.kr/bbs.
  6. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi and A. Fujishima, Langmuir, 27, 3275 (2011). https://doi.org/10.1021/la200438p
  7. H. R. Lee, D. J. Kim and K. H. Lee, Surf. Coat. Technol., 142, 468 (2001). https://doi.org/10.1016/S0257-8972(01)01137-9
  8. D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. B. Park, G. Irvin and P. Drzaic, J. Soc. Information Display, 17, 941(2009). https://doi.org/10.1889/JSID17.11.941
  9. N. Yamaguchi, K. Tadanaga, A. Matsuda, T. Minami and M. Tatsumisago, Surf. Coat. Technol., 201, 3653 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.122
  10. B. G. Kum, Y. C. Park, Y. J. Chang, J. Y. Jeon and H. M. Jang, Thin Solid Films, 519, 3778 (2011). https://doi.org/10.1016/j.tsf.2010.12.163
  11. B. Louis, N. Krins, M. Faustini and D. Grosso, J. Phys. Chem. C, 115, 3115 (2011). https://doi.org/10.1021/jp109653p
  12. W. Qiu, Y. M. Kang and L. L. Goddard, Appl. Phys. Lett., 96, 141116 (2010). https://doi.org/10.1063/1.3380825
  13. H. A. Macleod, Thin-film Optical Filters, 2nd ed (Macmillan, NY, USA, 1986), from http//www.thinfilmcenter.co/book.php
  14. J. Dai, W. Gao, B. Liu, X. Cao, T. Z. Xie, H. Zhao, D. Chen, H. Ping and R. Zhang, Appl. Surf. Sci., 364, 886 (2016). https://doi.org/10.1016/j.apsusc.2015.12.222
  15. A. Ulvestad, H. F. Andersen, J. P. Mæhlen, O. Prytz and M. Kirkengen, Sci. Rep., 7, 13315 (2017). https://doi.org/10.1038/s41598-017-13699-0
  16. D. Dergez, M. Schneider, A. Bittner and U. Schmid, Thin Solid Films, 589, 227 (2015). https://doi.org/10.1016/j.tsf.2015.05.028
  17. J. C. Barbour, H. J. Stein, O. A. Popov, M. Yonder and C. A. Outten, J. Vac. Sci. Technol., A, 9, 480 (1991). https://doi.org/10.1116/1.577392
  18. I. Kobayashi, T. Ogawa and S. Hotta, Jpn. J. Appl. Phys., 31, 336 (1992). https://doi.org/10.1143/JJAP.31.336
  19. J. H. Kim. Thesis (in Korean), Inha University, Korea (2014).
  20. G. Cheng, J. Qian, Z. Tang and G. Ding, Ceram. Int., 41, 1879 (2015). https://doi.org/10.1016/j.ceramint.2014.09.013
  21. M. Villa, D. Caceres and C. Prieto, J. Appl. Phys., 94, 12 (2003).
  22. L. Diegues, D. Caballero, J. Calder, M. Moreno, E. Martnez and J. Samitier, Biosensors, 2, 114 (2012). https://doi.org/10.3390/bios2020114
  23. X. Sun, H. T. Liu and H. F. Cheng, RSC Advances, 7, 47833 (2017). https://doi.org/10.1039/C7RA09056K
  24. Y. Hirohata, N. Shimamoto, T. Hino, T. Yamashima and K. Yabe, Thin Slid Films, 253, 425 (1999).
  25. Z. Gan, C. Wang and Z. Chen, J. Surface, 1, 59 (2018).