DOI QR코드

DOI QR Code

컴팩트 개질기용 수성가스전이 반응을 위한 Cu-CeO2 촉매에 대한 Nb2O5의 영향

The Effect of Nb2O5 on Cu-Nb-CeO2 Catalysts for Water Gas Shift Reaction of Compact Reformer

  • 정창훈 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학) ;
  • 김태광 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학) ;
  • 변희주 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학) ;
  • 김주환 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학) ;
  • 배은택 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학) ;
  • 선해림 (창원대학교 환경공학과) ;
  • 전경원 (경남대학교 환경에너지공학과) ;
  • 정대운 (창원대학교 친환경해양플랜트 FEED 공학과정 환경.화공시스템공학)
  • JEONG, CHANG-HOON (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University) ;
  • KIM, TAE-GWANG (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University) ;
  • BYON, HUI-JU (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University) ;
  • KIM, JU-HWAN (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University) ;
  • BAE, EUN-TAEK (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University) ;
  • SHEN, KAILIN (Department of Environmental Engineering, Changwon National University) ;
  • JEON, KYUNG-WON (Department of Environment and Energy Engineering, Kyungnam University) ;
  • JEONG, DAE-WOON (Department of Eco-friendly Offshore FEED Engineering, Environmental and Chemical System Engineering, Changwon National University)
  • 투고 : 2019.11.22
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

The water-gas shift reaction for the compact reformer was carried out at a gas hourly space velocity of 72,152 h-1 over the Cu-Nb-CeO2 catalysts prepared by co-precipitation method. In order to investigate the effect of Nb2O5 promotion over a Cu-CeO2 catalyst, the Nb2O5 loading amount was systematically changed from 0 to 5 wt.%. Among the prepared catalysts, the Cu-Nb-CeO2 (1%) catalyst showed the highest catalytic activity (CO conversion=61% at 400℃) as well as 100% CO2 selectivity. The high activity and stability of Cu-Nb-CeO2 (1%) catalyst are correlated to high Brunauer-Emmett-Teller surface area, small metallic Cu crystallite size, and enhanced redox property.

키워드

참고문헌

  1. C. Ratnasamy and J. P. Wagner, "Water gas shift catalysis", Catalysis Reviews Science and Engineering, Vol. 51, No. 3, 2009, pp. 325-440, doi: https://doi.org/10.1080/01614940903048661.
  2. J. H. Park, J. H. Baek, G. H Jo, and K. B. Yi, "Catalytic characteristic of water-treated Cu/ZnO/MgO/$Al_2O_3$ catalyst for LT-WGS reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 95-102, doi: https://doi.org/10.7316/KHNES.2019.30.2.95.
  3. A. Chougule and R. R. Sonde, "Modelling and experimental investigation of compact packed bed design of methanol steam reformer", Int. J. Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 29937-29945, doi: https://doi.org/10.1016/j.ijhydene.2019.09.166.
  4. D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A study on Pt-Na/$CeO_2$ catalysts for single stage water gas shift reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116, doi: https://doi.org/10.7316/KHNES.2012.23.2.111.
  5. D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent trend for hydrogen production technology by steam reforming of natural gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480. Retrieved from http://www.koreascience.or.kr/article/JAKO200710736976806.page.
  6. K. H. Kim, K. Y. Koo, U. H. Jung, and W. L. Yoon, "Preferential CO oxidation over Ce-promoted $Pt/\gamma-Al_2O_3$ catalyst", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 6, 2012, pp. 640-646, doi: https://doi.org/10.7316/KHNES.2012.23.6.640.
  7. J. L. Ayastuy, M. P. Gonzalez-Marcos, and M. A. Gutierrez-Ortiz, "Promotion effect of Sn in alumina-supported Pt catalysts for CO-PROX", Catalysis Communications, Vol. 12, No. 10, 2011, pp. 895-900, doi: https://doi.org/10.1016/j.catcom.2011.02.011.
  8. J. O. Shim, H. S. Na, S. Y. Ahn, W. J. Jang, and H. S. Roh, "An optimization of aging time for low-temperature water-gas shift over Cu-Zn-Al catalyst", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 2, 2019, pp. 103-110, doi: https://doi.org/10.7316/KHNES.2019.30.2.103.
  9. J. H. Kim, Y. S. Jang, J. C. Kim, and D. H. Kim, "Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol", Korean J. Chem. Eng., Vol. 36, No. 3, 2019, pp. 368-376, doi: https://doi.org/10.1007/s11814-018-0211-9.
  10. Y. T. Seo, D. J. Seo, J. H. Jeong, and W. L. Yoon, "Development of compact fuel processor for 2 kW class residential PEMFCs", J. Power Sources, Vol. 163, No. 1, 2006, pp. 119-124, doi: https://doi.org/10.1016/j.jpowsour.2006.05.022.
  11. H. M. Kim, K. W. Jeon, H. S. Na, W. J. Jang, and D. W. Jeong, "The effect of Cu loading on the performance of $Cu-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for single stage water gas shift reaction", Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 4, 2017, pp. 345-351, doi: https://doi.org/10.7316/KHNES.2017.28.4.345.
  12. Y. S. Oh, T. Y. Song, Y. S. Baek, and L. S. Choi, "Efficiency analysis of compact type steam reformer", Trans. of Korean Hydrogen and New Energy Society, Vol. 13, No. 4, 2002, pp. 313-321. Retrieved from http://www.koreascience.or.kr/article/JAKO200230360539783.page.
  13. S. B. Kim, M. S. Kim, S. W. Kim, and S. C. Hong "Reaction characteristics of Cu/$CeO_2$ catalysts for CO oxidation", Applied Chemistry for Engineering, Vol. 30, No. 5, 2019, pp. 620-626, doi: https://doi.org/10.14478/ace.2019.1067.
  14. K. G. Azzam, I. V. Babich, K. Seshan, and L. Lefferts, "Single stage water gas shift conversion over Pt/$TiO_2$-problem of catalyst deactivation", Applied Catalysis A: General, Vol. 338, No. 1-2, 2008, pp. 66-71, doi: https://doi.org/10.1016/j.apcata. 2007.12.020.
  15. K. R. Hwang, S. K. Ihm, S. C. Park, and J. S. Park, "Pt/$ZrO_2$ catalyst for a single-stage water-gas shift reaction: Ti addition effect", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6044-6051, doi: https://doi.org/10.1016/j.ijhydene.2013.01.101.
  16. C. A. Franchini, A. M. Duarte de Farias, E. M. Albuquerque, R. dos Santos, and M. A. Fraga, "Single-stage medium temperature water-gas shift reaction over Pt/$ZrO_2$ - support structural polymorphism and catalyst deactivation", Applied Catalysis B: Environmental, Vol. 117-118, 2012, pp. 302-309, doi: https://doi.org/10.1016/j.apcatb.2012.01.028.
  17. C. K. Byun, H. B. Im, J. H. Park, J. H. Baek, J. M. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced catalytic activity of Cu/Zn catalyst by Ce addition for low temperature water gas shift reaction", Clean Technology, Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.
  18. H. S. Na, D. W. Jeong, W. J. Jang, Y. L. Lee, and H. S. Roh, "A study on Cu based catalysts for water gas shift reaction to produce hydrogen from waste-derived synthesis gas", Tran s. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 3, 2014, pp. 227-233, doi: https://doi.org/10.7316/ KHNES.2014.25.3.227.
  19. J. A Rodriguez, P. Liu, X. Wang, W. Wen, J. Hanson, J. Hrbek, M. Perez, and J. Evans, "Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides", Catal. Today, Vol. 143, No. 1-2, 2009, pp. 45-50, doi: https://doi.org/10.1016/j.cattod.2008.08.022.
  20. L. Li, L. Song, H. Wang, C. Chen, Y. She, Y. Zhan, X. Lin, and Q. Zheng, "Water-gas shift reaction over CuO/$CeO_2$ catalysts: effect of $CeO_2$ supports previously prepared by precipitation with different precipitants", Int. J. Hydrogen Energy, Vol. 36, No. 15, 2011, pp. 8839-8849, doi: https://doi.org/10.1016/j.ijhydene.2011.04.137.
  21. D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renewable Energy, Vol. 65, 2014, pp. 102-107, doi: https://doi.org/10.1016/j.renene.2013.07.035.
  22. W. Yang, D. Li, D. Xu, and X. Wang, "Effect of $CeO_2$ preparation method and Cu loading on CuO/$CeO_2$ catalysts for methane combustion", Journal of Natural Gas Chemistry, Vol. 18, No. 4, 2009, pp. 458-466, doi: https://doi.org/10.1016/S1003-9953(08)60141-3.
  23. S. B. T. Tran, H. Choi, S. Oh, and J. Y Park, "Defective $Nb_2O_5$-supported Pt catalysts for CO oxidation: promoting catalytic activity via oxygen vacancy engineering", J. Catal., Vol. 375, 2019, pp. 124-134, doi: https://doi.org/10.1016/j.jcat.2019.05.017.
  24. F. Zhang, Q. Zheng, K. Wei, X. Lin, H. Zhang, J. Li, and Y. Cao, "Improved performance of Au/$Fe_2O_3$ catalysts promoted with $ZrO_2\;and\;Nb_2O_5$ in the WGS reaction under hydrogenrich conditions", Catal. Letters, Vol. 108, No. 3-4, 2006, pp. 131-136, doi: https://doi.org/10.1007/s10562-006-0047-5.
  25. E. Ramirez-Cabrera, A. Atkinson, and D. Chadwick, "Reactivity of ceria, Gd- and Nb-doped ceria to methane", Applied Catalysis B: Environmental, Vol. 36, No. 3, 2002, pp. 193-206, doi: https://doi.org/10.1016/S0926-3373(01)00299-5.
  26. S. O. Choi and S. H. Moon, "Performance of $La_{1-x}Ce_{x}Fe_{0.7}Ni_{0.3}O_{3}$ perovskite catalysts for methane steam reforming", Catal. Today Vol. 146, No. 1-2, 2009, pp. 148-153, doi: https://doi.org/10.1016/j.cattod.2009.02.023.
  27. J. Mi, J. Zhang, Y. Cao, C. Chen, X. Lin, J. Chen, and L. Jiang, "Sulfur resistant WGS catalyst for hydrogen production based on CoMo supported by Nb modified MgAl mixed oxide", Int. J. Hydrogen Energy, Vol. 42, No. 50, 2017, pp. 29935-29943, doi: https://doi.org/10.1016/j.ijhydene.2017.08.115.
  28. X. Lin, C. Chen, J. Ma, X. Fang, Y. Zhan, and Q. Zheng, "Promotion effect of $Nb^{5+}\;for\;Cu/CeO_2$ water-gas shift reaction catalyst by generating mobile electronic carriers", Int. J. Hydrogen Energy, Vol. 38, No. 27, 2013, pp. 11847-11852, doi: https://doi.org/10.1016/j.ijhydene.2013.07.001.
  29. H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over $Ni-Ce_{(1-x)}Zr(x)O2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216, doi: https://doi.org/10.1016/j.renene.2011.08.013.
  30. W. J. Jang, D. W. Jeong, J. O. Shim, and H. S. Roh, "The effect of calcination temperature on the performance of $Ni-Ce_{0.8}Zr_{0.2}O_{2}$ catalysts for steam reforming of methane under severe conditions", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 213-218, doi: https://doi.org/10.7316/KHNES.2012.23.3.213.
  31. D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, K. W. Jeon, Y. C. Seo, and H. S. Roh, "A comparison study on high-temperature water-gas shift reaction over Fe/Al/Cu and Fe/Al/Ni catalysts using simulated waste-derived synthesis gas", J. Mater. Cycles Waste Manag., Vol. 16, No. 4, 2014, pp. 650-656, doi: https://doi.org/10.1007/s10163-014-0272-8.
  32. C. Pedrero, T. Waku, and E. Iglesia, "Oxidation of CO in $H_2$-CO mixtures catalyzed by platinum: alkali effects on rates and selectivity", J. Catal., Vol. 233, No. 1, 2005, pp. 242-255, doi: https://doi.org/10.1016/j.jcat.2005.04.005.