DOI QR코드

DOI QR Code

FERPM을 적용한 바이오매스 촤의 전산해석적 연구

Numerical Study of Biomass Char Applying FERPM

  • OH, HYUN-SUK (School of Mechanical Engineering, Pusan National University) ;
  • KIM, KANG-MIN (School of Mechanical Engineering, Pusan National University) ;
  • KIM, GYEONG-MIN (School of Mechanical Engineering, Pusan National University) ;
  • JEON, CHUNG-HWAN (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2019.11.19
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

To reduce emissions from coal-fired power plants, researchers focusing on coal and biomass co-firing technology. Biomass, with its carbon-neutral nature and lower quantities of nitrogen and sulfur compared with coals, has a positive impact on coal-fired power generation. Many studies on the combustion of biomass have been conducted, but the study on the combustion characteristics of biomass char is limited. FERPM predicts char combustion characteristics with high accuracy by introducing experimental data-based parameters of biomass char and has not yet been applied in numerical simulation. In this study, FERPM is numerically applied to char combustion of wood pellets representing wood-based biomass and the combustion characteristics are compared with the kinetic/diffusion limited model, intrinsic model, and diffusion limited model.

키워드

참고문헌

  1. P. Madejski, "Thermal power plants : new trends and recent developments", IntechOpen, Poland, 2018, pp. 1-11.
  2. S. R. Gubba, D. B. Ingham, K. J. Larsen, L. Ma, M. Pourkashanian, H. Z. Tan, A. Williams, and H. Zhou, "Numerical modelling of the co-firing of pulverised coal and straw in a 300 MWe tangentially fired boiler", Fuel Processing Technology, Vol. 104, 2012, pp. 181-188, doi: https://doi.org/10.1016/j.fuproc.2012.05.011.
  3. E. Houshfar, O. Skreiberg, D. Todorovic, A. Skreiberg, T. Lovas, A. Jovovic, and L. Sorum, "$NO_x$ emission reduction by staged combustion in grate combustion of biomass fuels and fuel mixtures", Fuel, Vol. 98, 2012, pp. 29-40, doi: https://doi.org/10.1016/j.fuel.2012.03.044.
  4. M. Sami, K. Annamalai, M. Wooldridge, "Co-firing of coal and biomass fuel blends", Prog. Energy Combust. Sci., Vol. 27, No. 2, 2001, pp. 171-214, doi: https://doi.org/10.1016/S0360-1285(00)00020-4.
  5. K. Savolainen, "Co-firing of biomass in coal-fired utility boilers", Applied Energy, Vol. 74, No. 3-4, 2003, pp. 369-381, doi: https://doi.org/10.1016/S0306-2619(02)00193-9.
  6. R. Perez-Jeldres, P. Cornejo, M. Flores, A. Gordon, and X. Garcia, "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: synergistic effects and emissions profiles", Energy, Vol. 120, 2017, pp. 663-674, doi: https://doi.org/10.1016/j.energy.2016.11.116.
  7. A. A. Bhuiyan and J. Naser, "CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant", Fuel, Vol. 159, 2015, pp. 150-168, doi: https://doi.org/10.1016/j.fuel.2015.06.058.
  8. S. Black, J. Szuhanszki, A. Pranzitelli, L. Ma, P. J. Stanger, D. B. Ingham, and M. Pourkashanian, "Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling", Fuel, Vol. 113, 2013, pp. 780-786, doi: https://doi.org/10.1016/j.fuel.2013.03.075.
  9. E. Kastanaki and D. Vamvuka, "A comparative reactivity and kinetic study on the combustion of coal-biomass char blends", Fuel, Vol. 85, No. 9, 2006, pp. 1186-1193, doi: https://doi.org/10.1016/j.fuel.2005.11.004.
  10. A. I. Moreno, R. Font, and J. A. Conesa, "Combustion of furniture wood waste and solid wood: kinetic study and evolution of pollutants", Fuel, Vol. 192, 2017, pp. 169-177, doi: https://doi.org/10.1016/j.fuel.2016.12.022.
  11. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis", Fuel, Vol. 86, No. 12-13, 2007, pp. 1781-1788, doi: https://doi.org/10.1016/j.fuel.2006.12.013.
  12. H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang, "In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin", Energy Fuels, Vol. 20, No. 1, 2006, pp. 388-393, doi: https://doi.org/10.1021/ef0580117.
  13. J. E. White, W. J. Catallo, and B. L. Legendre, "Biomass pyrolysis kinetics: a comparative critical review with relevant ag ricultural residue case studies", J. Anal. Appl. Pyrolysis, Vol. 91, No. 1, 2011, pp. 1-33, doi: https://doi.org/10.1016/j.jaap.2011.01.004.
  14. M. J. Wornat, R. H. Hurt, K. A. Davis, and N. Y. C. Yang, "Single-particle combustion of two biomass chars", Symposium (International) on Combustion, Vol. 26, No. 2, 1996, pp. 3075-3083, doi: https://doi.org/10.1016/S0082-0784(96)80151-2.
  15. J. K. Sun and R. H. Hurt, "Mechanisms of extinction and near-extinction in pulverized solid fuel combustion", Proc. Combust. Inst., Vol. 28, No. 2, 2000, pp. 2205-2213, doi: https://doi.org/10.1016/S0082-0784(00)80630-X.
  16. R. Hurt, J. K. Sun, and M. Lunden, "A kinetic model of carbon burnout in pulverized coal combustion", Combust. Flame, Vol. 113, No. 1-2, 1998, pp. 181-197, doi: https://doi.org/10.1016/S0010-2180(97)00240-X.
  17. Y. Niu and C. R. Shaddix, "A sophisticated model to predict ash inhibition during combustion of pulverized char particles", Proc. Combust. Inst., Vol. 35, No. 1, 2015, pp. 561-569, doi: https://doi.org/10.1016/j.proci.2014.05.077.
  18. K. Y. Lisandy, G. M. Kim, J. H. Kim, G. B. Kim, and C. H. Jeon, "Enhanced accuracy of the reaction rate prediction model for carbonaceous solid fuel combustion", Energy Fuels, Vol. 31, No. 5, 2017, pp. 5135-5144, doi: https://doi.org/10.1021/acs.energyfuels.7b00159.
  19. S. K. Bhatia and D. D. Perlmutter, "A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control", AIchE, Vol. 26, No. 3, 1980, pp. 379-386, doi: https://doi.org/10.1002/aic.690260308.
  20. I. W. Smith, "The combustion rates of coal chars: a review", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1045-1065. Retrieved from https://che.utah.edu/-ring/ChE-6960/Combustion%20of%20COAL%20CHARS-%20A%20REVIEW.pdf.
  21. M. M. Baum and P. J. Street, "Predicting the combustion behavior of coal particles", Combust. Sci. Technol., Vol. 3, No. 5, 1971, pp. 231-243, doi: https://doi.org/10.1080/00102207108952290.
  22. M. A. Field, "Rate of combustion of size-graded fractions of char from a low-rank coal between $1\;200^{\circ}K\;and\;2\;000^{\circ}K$", Combust. Flame, Vol. 13, No. 3, 1969, pp. 237-252, doi: https://doi.org/10.1016/0010-2180(69)90002-9.
  23. L. Ma, A. Guo, Q. Fang, T. Wang, C. Zhang, and G. Chen, "Combustion interactions of blended coals in an $O_2/CO_2$ mixture in a drop-tube furnace: experimental investigation and numerical simulation", Appl. Therm. Eng., Vol. 145, 2018, pp. 184-200, doi: https://doi.org/10.1016/j.applthermaleng.2018.09.033.
  24. B. H. Lee, S. G. Kim, J. H. Song, Y. J. Chang, and C. H. Jeon, "Influence of coal blending methods on unburned carbon and NO emissions in a drop-tube furnace", Energy Fuels, Vol. 25, No. 11, 2011, pp. 5055-5062, doi: https://doi.org/10.1021/ef200783q.
  25. ANSYS, "ANSYS FLUENT 12.0 Theory Guide", ANSYS Inc., Canonsburg, PA, 2009.
  26. G. M. Kim, D. G. Lee, and C. H. Jeon, "Fundamental characteristics and kinetic analysis of lignocellulosic woody and herbaceous biomass fuels", Energies, Vol. 12, No. 6, 2019, pp. 1008, doi: https://doi.org/10.3390/en12061008.