DOI QR코드

DOI QR Code

열교환기 형식에 따른 열교환기의 에너지 및 엔트랜시 성능 특성 해석

Energy and Entransy Characteristic Analysis of Heat Exchangers Depending on Heat Exchanger Type

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 한철호 (금오공과대학교 기계시스템공학과)
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • HAN, CHUL HO (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • 투고 : 2020.01.30
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

In this work energy and entransy characteristics of heat exchangers are analyzed for 12 different flow arrangements of heat exchangers. The dimensionless parameters are number of entransy dissipation (Ng), number of entransy dissipation-based thermal resistance (Nr), and entransy dissipation-based effectiveness of heat-exchanger (εg). The dimensionless parameters are expressed analytically in terms of the effectiveness of heat exchanger (ε), heat capacity ratio (c), and number of transfer unit (N) for optimal performance of heat exchangers. Results showed that the dimensionless parameters based on the entransy dissipation can be useful concepts for optimal design of heat exchangers.

키워드

참고문헌

  1. Z. Y. Guo, H. Y. Zhu, and X. G. Liang, "Entransy - a physical quantity describing heat transfer ability", Int. J. Heat Mass Transfer, Vol. 50, No. 13-14, 2007, pp. 2545-2556, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034.
  2. X. T. Cheng, X. G. Liang, and Z. Y. Guo, "Entransy decrease principle of heat transfer in an isolated system", Chin. Sci. Bull., Vol. 56, 2011, pp. 847-854, doi: https://doi.org/10.1007/s11434-010-4328-4.
  3. X. T. Cheng and X. G. Liang, "From thermomass to entransy", Int. J. Heat Mass Transfer, Vol. 62, 2013, pp. 174-177, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.063.
  4. Z. Q. Yu, P. Wang, W. J. Zhou, Z. Y. Li, and W. Q. Tao, "Study on the consistency between field synergy principle and entransy dissipation extremum principle", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 621-634, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.044.
  5. L. Zhang, H. Y. Wei, and X. S. Zhang, "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory", Energy, Vol. 141, 2017, pp. 661-672, doi: https://doi.org/10.1016/j.energy.2017.09.118.
  6. K. H. Kim and K. Kim, "Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems", Int. J. Heat Mass Transfer, Vol. 84, 2015, pp. 80‒90, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.002.
  7. C. H. Han and K. H. Kim, "Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle", J. Ther. Sci., Vol. 25, 2016, pp. 242-249, doi: https://doi.org/10.1007/s11630-016-0856-9.
  8. X. Qian and Z. Li, "Analysis of entransy dissipation in heat exchangers", Int. J. Thermal Sci., Vol. 50, No. 4, 2011, pp. 608-614, doi: https://doi.org/10.1016/j.ijthermalsci.2010.11.004.
  9. X. Cheng, Q. Zhang, and X. Liang, "Analyses of entransy dissipation, entropy generation and entransy-dissipationbased thermal resistance on heat exchanger optimization", App. Therm. Eng., Vol. 38 , 2012, pp. 31-39, doi: https://doi.org/10.1016/j.applthermaleng.2012.01.017.
  10. J. Wu and X. Cheng, "Generalized thermal resistance and its application to thermal radiation based on entransy theory", Int. J. Heat Mass Transfer, Vol. 58, No. 1-2, 2013, pp. 374-381, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.046.
  11. Q. Chen, "Entransy dissipation-based thermal resistance performance design and optimization", Int. J. Heat Mass Transfer, Vol. 60, 2013, pp. 156-162, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.062.
  12. S. Wang, G. Jian, J. Wang, L. Sun, and J. Wen, "Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 743-750, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.061.
  13. Y. C. Xu, Q. Chen, and Z. Y. Guo, "Optimization of heat exchanger networks based on Lagrange multiplier method with the entransy balance equation as constraint", Int. J. Heat Mass Transfer, Vol. 95, 2016, pp. 109-115, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.092.
  14. L. Xia, Y. Feng, X. Sun, and S. Xiang, "A novel method based on entransy theory for setting energy targets of heat exchanger network", Chinese Journal of Chemical Engineering, Vol. 25, No. 8, 2017, pp. 1037-1042, doi: https://doi.org/10.1016/j.cjche.2017.03.015.
  15. Y. C. Hua, T. Zhao, and Z. Y. Guo, "Optimization of the one -dimensional transient heat conduction problems using ex tended entransy analyses", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 166-172, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.101.
  16. J. Wen, X. Gu, M. Wang, Y. Liu, and S. Wang, "Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory", Applied Thermal Engineering, Vol. 130, 2018, pp. 804-813, doi: https://doi.org/10.1016/j.applthermaleng.2017.10.164.
  17. A. Bejan and A. D. Kraus, "Heat transfer handbook", John Wiley & Sons, USA, 2003.