DOI QR코드

DOI QR Code

저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석

Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 고형종 (금오공과대학교 기계공학과)
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • KO, HYUNG JONG (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2020.01.29
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.

키워드

참고문헌

  1. M. Aguirre and G. Ibikunle, "Determinants of renewable energy growth: a global sample analysis", Energy Policy, Vol. 69, 2014, pp. 374-384, doi: https://doi.org/10.1016/j.enpol.2014.02.036.
  2. P. Roy, M. Désilets, N. Galanis, H. Nesreddine, and E. Cayer, "Thermodynamic analysis of a power cycle using a low-temperature source and a binary $NH_3-H_2O$ mixture as working fluid", Int. J. Therm. Sci., Vol. 49, No. 1, 2010, pp. 48-58, doi: https://doi.org/10.1016/j.ijthermalsci.2009.05.014.
  3. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Applied Energy, Vol. 113, 2014, pp. 970-981, doi: https://doi.org/10.1016/j.apenergy.2013.08.055.
  4. A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, "Energetic and economic investigation of organic Rankine cycle applications", Appl. Therm. Eng., Vol. 29, No. 8-9, 2009, pp. 1809-1817, doi: https://doi.org/10.1016/j.applthermaleng.2008.08.016.
  5. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16, doi: https://doi.org/10.1016/j.tca.2011.11.028.
  6. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, and K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, No. 3, 2010, pp. 1403-1411, doi: https://doi.org/10.1016/j.energy.2009.11.025.
  7. K. H. Kim and H. Perez-Blanco, "Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration", Appl. Therm. Eng., Vol. 91, 2015, pp. 964-974, doi: https://doi.org/10.1016/j.applthermaleng.2015.04.062.
  8. Y. Dai, J. Wang, and L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery", Energy Convers. Manag., Vol. 50, No. 3, 2009, pp. 576-582, doi: https://doi.org/10.1016/j.enconman.2008.10.018.
  9. U. Drescher and D. Brueggemann, "Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants", Appl. Therm. Eng., Vol. 27, No. 1, 2007, pp. 223-228, doi: https://doi.org/10.1016/j.applthermaleng.2006.04.024.
  10. N. A. Lai, M. Wendland, and J. Fischer, "Working fluids for high-temperature organic Rankine cycles", Energy, Vol. 36, No. 1, 2011, pp. 199-211, doi: https://doi.org/10.1016/j.energy.2010.10.051.
  11. B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle", Appl. Therm. Eng., Vol. 29, No. 11-12, 2009, pp. 2468-2476, doi: https://doi.org/10.1016/j.applthermaleng.2008.12.025.
  12. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plants", Appl. Therm. Eng., Vol. 28, No. 2-3, 2008, pp. 190-194, doi: https://doi.org/10.1016/j.applthermaleng.2007.03.025.
  13. K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, No. 1, 2014, pp. 50-60, doi: https://doi.org/10.1016/j.applthermaleng.2014.04.064.
  14. S. Ogriseck, "Integration of Kalina cycle in a combined heat and power plant, a case study", Appl. Therm. Eng., Vol. 29, No. 14-15, 2009, pp. 2843-2848, doi: https://doi.org/10.1016/j.applthermaleng.2009.02.006.
  15. A. Modi and F. Haglind, "Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications", Appl. Therm. Eng., Vol. 76, 2015, pp. 196-205, doi: https://doi.org/10.1016/j.applthermaleng.2014.11.047.
  16. F. Sun, W. Zhou, Y. Ikegami, K. Nakagami, and X. Su, "Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)", Renewable Energy, Vol. 66, 2014, pp. 268-279, doi: https://doi.org/10.1016/j.renene.2013.12.015.
  17. A. Bejan, "Advanced engineering thermodynamics", 3rd ed, John Wiley & Sons, USA, 2006.
  18. K. H. Kim, Y. G. Bae, Y. G. Jung, and S. W. Kim, "Comparative performance analysis of ammonia-water Rankine cycle and Kalina cycle for recovery of low-temperature heat source", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 2, 2018, pp. 148-154, doi: https://doi.org/10.7316/KHNES.2018.29.2.148.
  19. S. W. Kim and K. H. Kim, "Comparative exergy analysis of organic and ammonia-water Rankine cycles", Int. J. Mech. Prod. Eng., Vol. 5, No. 4, 2017, pp. 89-93. Retrieved from http://www.iraj.in/journal/journal_file/journal_pdf/2-365-149854409889-93.pdf.
  20. F. Xu and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power-cycle applications", Energy, Vol. 24, No. 6, 1999, pp. 525-536, doi: https://doi.org/10.1016/S0360-5442(99)00007-9.
  21. J. M. Smith, H. C. Van Ness, and M. M. Abbott, "Introduction to chemical engineering thermodynamics", 7th Ed. McGraw-Hill, USA, 2005.
  22. T. Yang, G. J. Chen, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: application up to the near-critical region", Chem. Eng. J., Vol. 67, No. 1, 1997, pp. 27-36, doi: https://doi.org/10.1016/S1385-8947(97)00012-0.
  23. J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibrium, Vol. 224, No. 2, 2004, pp. 213-219, doi: https://doi.org/10.1016/j.fluid.2004.05.007.