DOI QR코드

DOI QR Code

리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries

  • 유호석 (경운대학교 항공신소재공학과) ;
  • 김인수 (경운대학교 항공신소재공학과)
  • RYU, HO SUK (Department of Advanced Aerospace Materials Engineering, Kyungwoon Aeronautical Institute of Technology (KAI-TECH), Kyungwoon University) ;
  • KIM, IN SOO (Department of Advanced Aerospace Materials Engineering, Kyungwoon Aeronautical Institute of Technology (KAI-TECH), Kyungwoon University)
  • 투고 : 2019.11.22
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

키워드

참고문헌

  1. J. He, Y. Chen, P. Li, F. Fu, Z. Wang, and W. Zhang, "Selfassembled $CoS_2$ nanoparticles wrapped by $CoS_2$-quantumdots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries", Electrochim. Acta, Vol. 182, 2015, pp. 424-429, doi: https://doi.org/10.1016/j.electacta.2015.09.131.
  2. N. Mahmood, C. Zhang, J. Jiang, F. Liu, and Y. Hou, "Multifunctional $Co_3S_4$/graphene composites for lithium ion batteries and oxygen reduction reaction", Chemistry, Vol. 19, No.16, 2013, pp. 5183-5190, doi: https://doi.org/10.1002/chem.201204549.
  3. C. Dong, X. Zheng, B. Huang, and M. Lu, "Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries", Appl. Surf. Sci., Vol. 265, 2013, pp. 114-119, doi: https://doi.org/10.1016/j.apsusc.2012.10.145.
  4. W. Qiu, J. Xia, H. Zhong, S. He, S. Lai, and L. Chen, "L-Cysteine-assisted synthesis of cubic pyrite/nitrogendoped graphene composite as anode material for lithiumion batteries", Electrochim. Acta, Vol. 137, 2014, pp. 197-205, doi: https://doi.org/10.1016/j.electacta.2014.05.156.
  5. M. Walter, T. Zündab, and M. V. Kovalenko, "Pyrite ($FeS_2$) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials", Nanoscale, Vol. 7, No. 20, 2015, pp. 9158-9163, doi: https://doi.org/10.1039/C5NR00398A.
  6. K. Zhang, T. Zhang, J. Liang, Y. Zhu, N. Lin, and Y. Qian, "A potential pyrrhotite ($Fe_7S_8$) anode material for lithium storage", RSC Advances, Vol. 5, No. 19, 2015, pp. 14828-14831, doi: https://doi.org/10.1039/C4RA14819C.
  7. X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H. H. Wang, W. Weng, L. Trahey, C. P. Canlas, and J. W. Elam, "Gallium sulfide-single‐walled carbon nanotube composites: high‐performance anodes for lithium‐ion batteries", Adv. Funct. Mater., Vol. 24, No. 34, 2014, pp.5435-5442, doi: https://doi.org/10.1002/adfm.201401002.
  8. Y. Liu, Y. Qiao, W. X. Zhang, Z. Li, X. L. Hu, L. X. Yuana, and Y. H. Huang, "Coral-like ${\alpha}$-MnS composites with N-doped carbon as anode materials for high-performance lithiumion batteries", J. Material Chemistry, Vol. 22, No. 45, 2012, pp. 24026-24033, doi: https://doi.org/10.1039/C2JM35227C.
  9. N. Lingappan, N. H. Van, S. Lee, and D. J. Kang, "Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: an advanced heterostructure for energy storage devices", J. Power Sources, Vol. 280, 2015, pp. 39-46, doi: https://doi.org/10.1016/j.jpowsour.2015.01.064.
  10. N. Mahmood, C. Zhang, and Y. Hou, "Nickel Sulfide/nitrogen-doped graphene composites: phase‐controlled synthesis and high performance anode materials for lithium ion batteries", Small, Vol. 9, No. 8, 2013, pp. 1321-1328, doi: https://doi.org/10.1002/smll.201203032.
  11. Q. Chen, W. Chen, J. Ye, Z. Wang, and J. Y. Lee, "L-Cysteine -assisted hydrothermal synthesis of nickel disulfide/ graphene composite with enhanced electrochemical performance for reversible lithium storage", J. Power Sources, Vol. 294, 2015, pp. 51-58, doi: https://doi.org/10.1016/j.jpowsour.2015.06.071.
  12. J. Cai, Z. Li, and P. K. Shen, "Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries", ACS Appl. Mater. Interfaces, Vol. 4, No. 8, 2012, pp. 4093-4098, doi: https://doi.org/10.1021/am300873n.
  13. Q. Zhang, R. Li, M. Zhang, B. Zhang, and X. Gou, "$SnS_2$/reduced graphene oxide nanocomposites with superior lithium storage performance". Electrochim. Acta, Vol. 115, 2014, pp. 425-433, doi: https://doi.org/10.1016/j.electacta.2013.10.193.
  14. X. Xu, S. Jeong, C. S. Rout, P. Oh, M. Ko, H. Kim, M. G. Kim, R. Cao, H. S. Shin, and J. Cho, "Lithium reaction mechanism and high rate capability of $VS_4$-graphene nanocomposite as an anode material for lithium batteries", J. Mater. Chem. A, Vol. 2, No. 28, 2014, pp. 10847-10853, doi: https://doi.org/10.1039/C4TA00371C.
  15. Y. Fu, Z. Zhang, X. Yang, Y. Gan, and W. Chen, "ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries", RSC Adv., Vol. 5, No. 106, 2015, pp. 6941-86944, doi: https://doi.org/10.1039/C5RA15108B.
  16. A. Ritchie, "New cathode materials for thermal batteries", Proceedings of the 18th International Power Sources Symposium, 1993, pp. 299-312.
  17. P. J. Masset, R. A. Guidotti, "Thermal activated ("thermal") battery technology: part IIIa: FeS2 cathode material", J. Power Sources, Vol. 177, No. 2, 2008, pp. 595-609, doi: https://doi.org/10.1016/j.jpowsour.2007.11.017.
  18. Y. S. Choi, H. R. Yu, H. Cheong, and Y. S. Lee, "Effects of pyrite ($FeS_2$) particle sizes on electrochemical characteristics of thermal batteries", Applied Chemistry for Engineering, Vol. 25, No. 2, 2014, pp. 161-166, doi: https://doi.org/10.14478/ace.2013.1123.
  19. Y. Shao-Horn, S. Osmialowski, and Q. C. Horn, "Nano-$FeS_2$ for commercial Li / $FeS_2$ primary batteries", J. Electrochem. Soc., Vol. 149, No. 11, 2002, pp. A1499-A1502, doi: https://doi.org/10.1149/1.1513558.
  20. J. W. Choi, G. Cheruvally, H. J. Ahn, K. W. Kim, and J. H. Ahn, "Electrochemical characteristics of room temperature Li/$FeS_2$ batteries with natural pyrite cathode", J. Power Sources, Vol. 163, No. 1, 2006, pp.158-165, doi: https://doi.org/10.1016/j.jpowsour.2006.04.075.
  21. L. Li, M. Caban-Acevedo, S. N. Girarda, and S. Jin, "High-purity iron pyrite ($FeS_2$) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries", Nanoscale, Vol. 6, No. 4, 2014, pp. 2112-2118, doi: https://doi.org/10.1039/C3NR05851D.
  22. S. S. Zhang and D. T. Tran, "Mechanism and solution for the capacity fading of Li/$FeS_2$ battery", J. Electrochem. Soc., Vol. 163, No. 5, 2016, pp. A792-A797, doi: https://doi.org/10.1149/2.0041606jes.
  23. X. Wen, X. Wei, L. Yang, and P. K. Shen, "Self-assembled $FeS_2$ cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries", J. Mater. Chem. A, Vol. 3, No. 5, 2015, pp. 2090-2096, doi: https://doi.org/10.1039/C4TA05575F.
  24. J. Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen, and L. Chen, "Facile synthesis of $FeS_2$ nanocrystals and their magnetic and electrochemical properties", RSC Adv., Vol. 3, No. 17, 2013, pp. 6132-6140, doi: https://doi.org/10.1039/C3RA22405H.
  25. J. Zheng, Y. Cao, C. Cheng, C. Chen, R. W. Yan, H. X. Huai, Q. F. Dong, M. S. Zheng, and C. C. Wang, "Facile synthesis of $Fe_3S_4$ hollow spheres with high-performance for lithium-ion batteries and water treatment", J. Mater. Chem. A, Vol. 2, No. 46, 2014, pp. 19882-19888, doi: https://doi.org/10.1039/C4TA05148C.
  26. J. Z. Wang, S. L. Chou, S. Y. Chew, J. Z. Sun, M. Forsyth, D. R. MacFarlane, and H. K. Liu, "Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries", Solid State Ionics, Vol. 179, No. 40, 2008, pp. 2379-2382, doi: https://doi.org/10.1016/j.ssi.2008.09.007.
  27. C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, "Oriented growth of large-scale nickel sulfidenanowire arrays via a general solution route for lithium-ion battery cathode applications", J. Mater. Chem., Vol. 19, No. 39, 2009, pp. 7277-7283, doi: https://doi.org/10.1039/B909261G.
  28. J. J. Cheng, Y. Ou, J. T. Zhu, H. J. Song, and Y. Pan, "Nickel sulfide cathode for stable charge-discharge rates in lithium rechargeable battery", Mater. Chem. Phys., Vol. 231, 2019, pp. 131-137, doi: https://doi.org/10.1016/j.matchemphys.2019.04.024.
  29. S. C. Han, K. W. Kim, H. J. Ahn, J. H. Ahn, and J. Y. Lee, "Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries", J. Alloys. Compd., Vol. 361, No. 1-2, 2003, pp. 247-251, doi: https://doi.org/10.1016/S0925-8388(03)00380-3.
  30. J. Wang, S. Y. Chew, D. Wexler, G. X. Wang, S. H. Ng, S. Zhong, and H. K. Liu, "Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery", Electrochem. Commun., Vol. 9, No. 8, 2007, pp. 1877-1880, doi: https://doi.org/10.1016/j.elecom.2007.04.020.
  31. N. H. Idris, M. M. Rahman, S. L. Chou, J. Z. Wang, D. Wexler, and H. K. Liu, "Rapid synthesis of binary ${\alpha}-NiS-{\beta}-NiS$ by microwave autoclave for rechargeable lithium batteries", Electrochim. Acta, Vol. 58, 2011, pp. 456-462, doi: https://doi.org/10.1016/j.electacta.2011.09.066.
  32. T. Takeuchi, H. Sakaebe, H. Kageyam, K. Handa, T. Sakai, and K. Tatsumi, "Modification of nickel sulfide by surface coating with $TiO_2\;and\;ZrO_2$ for improvement of cycle capability", J. Electrochem. Soc., Vol. 156, No. 11, 2009, pp. A958-A966, doi: https://doi.org/10.1149/1.3225908.
  33. Y. Wang, Q. Zhu, L. Tao, and X. Su, "Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries" J. Mater. Chem.. Vol. 21, No. 25, 2011, pp. 9248-9254, doi: https://doi.org/10.1039/C1JM10271K.