DOI QR코드

DOI QR Code

REMARKS ON A THEOREM OF CUPIT-FOUTOU AND ZAFFRAN

  • Kim, Jin Hong (Department of Mathematics Education Chosun University)
  • Received : 2019.03.02
  • Accepted : 2019.08.02
  • Published : 2020.04.30

Abstract

There is a well-known class of compact, complex, non-Kählerian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation 𝓕. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation 𝓕 is actually transverse Kähler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation 𝓕 on an LVMB manifold N is transverse Kähler with respect to a basic and transverse Kähler form and the leaf space N/𝓕 is an orbifold, N/𝓕 is projective, and thus N is actually an LVM manifold.

Keywords

References

  1. W. L. Baily, On the imbedding of V -manifolds in projective space, Amer. J. Math. 79 (1957), 403-430. https://doi.org/10.2307/2372689
  2. F. Battaglia and E. Prato, Generalized toric varieties for simple nonrational convex polytopes, Internat. Math. Res. Notices 2001 (2001), no. 24, 1315-1337. https://doi.org/10.1155/S1073792801000629
  3. F. Battaglia and D. Zaffran, Foliations modeling nonrational simplicial toric varieties, Int. Math. Res. Not. IMRN 2015 (2015), no. 22, 11785-11815. https://doi.org/10.1093/imrn/rnv035
  4. L. Battisti, LVMB manifolds and quotients of toric varieties, Math. Z. 275 (2013), no. 1-2, 549-568. https://doi.org/10.1007/s00209-013-1147-8
  5. F. Bosio, Varietes complexes compactes: une generalisation de la construction de Meersseman et Lopez de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1259-1297. https://doi.org/10.5802/aif.1855
  6. R. Bott and L. W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York, 1982.
  7. M. Brion, Some structure theorems for algebraic groups, in Algebraic groups: structure and actions, 53-126, Proc. Sympos. Pure Math., 94, Amer. Math. Soc., Providence, R, 2017I.
  8. E. Calabi and B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58 (1953), 494-500. https://doi.org/10.2307/1969750
  9. S. Cupit-Foutou and D. Zaffran, Non-Kahler manifolds and GIT-quotients, Math. Z. 257 (2007), no. 4, 783-797. https://doi.org/10.1007/s00209-007-0144-1
  10. A. El Kacimi-Alaoui, Operateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), no. 1, 57-106.
  11. A. Futaki, H. Ono, and G. Wang, Transverse Kahler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom. 83 (2009), no. 3, 585-635.
  12. P. Griffiths and J. Harris, Principles of Algebraic Geometry, reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. https://doi.org/10.1002/9781118032527
  13. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
  14. H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, in Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 167-185, Interscience Publishers, Inc., New York, 1948.
  15. H. Ishida, Torus invariant transverse Kahler foliations, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5137-5155. https://doi.org/10.1090/tran/7070
  16. H. Ishida, Towards transverse toric geometry, preprint (2018); arXiv:1807.10449v1.
  17. J. J. Loeb and M. Nicolau, On the complex geometry of a class of non-Kahlerian manifolds, Israel J. Math. 110 (1999), 371-379. https://doi.org/10.1007/BF02808191
  18. S. Lopez de Medrano and A. Verjovsky, A new family of complex, compact, nonsymplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 253-269. https://doi.org/10.1007/BF01233394
  19. L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), no. 1, 79-115. https://doi.org/10.1007/s002080050360
  20. L. Meersseman and A. Verjovsky, Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math. 572 (2004), 57-96. https://doi.org/10.1515/crll.2004.054
  21. E. Prato, Simple non-rational convex polytopes via symplectic geometry, Topology 40 (2001), no. 5, 961-975. https://doi.org/10.1016/S0040-9383(00)00006-9
  22. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 3, Piblish or Perish Inc., Texas, 1999.
  23. J. Tambour, LVMB manifolds and simplicial spheres, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1289-1317. https://doi.org/10.5802/aif.2723