DOI QR코드

DOI QR Code

A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends

  • Received : 2018.09.20
  • Accepted : 2019.01.30
  • Published : 2020.02.28

Abstract

With benefits to the human health, environment, economy, and energy, anaerobic digestion (AD) systems have attracted remarkable attention within the scientific community. Anaerobic digestion system is created from (bio)reactors to perform a series of bi-metabolism steps including hydrolysis/acidogenesis, acetogenesis, and methanogenesis. By considering the physical separation of the digestion steps above, AD systems can be classified into single-stage (all digestion steps in one reactor) and multi-stage (digestion steps in various reactors). Operation of the AD systems does not only depend on the type of digestion system but also relies on the interaction among growth factors (temperature, pH, and nutrients), the type of reactor, and operating parameters (retention time, organic loading rate). However, these interactions were often reviewed inadequately for the single-stage digestion systems. Therefore, this paper aims to provide a comprehensive review of both single-stage and multi-stage systems as well as the influence of the growth factors, operating conditions, and the type of reactor on them. From those points, the advantages, disadvantages, and application range of each system are well understood.

Keywords

References

  1. Hoornweg D, Bhada-Tata P. What a waste: A global review of solid waste management. In: Urban development series knowledge papers, vol.15; Washington D.C.: World bank; 2012.
  2. Al Seadi T, Owen N, Hellström H, Kang H. Source separation of MSW. In: IEA Bioenergy. The International Energy Agency; 2013.
  3. Trzcinski AP, David CS. Microbial biomethane from solid wastes: Principles and biotechnogical processes. In: Harzevili FD, Hiligsmann S, eds. Microbial fuels. USA: CRC Press; 2017. p. 77-151.
  4. Zhang W, Zhang L, Li A. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chem. Eng. J. 2015;259:795-805. https://doi.org/10.1016/j.cej.2014.08.039
  5. Rapport J, Zhang R, Jenkins BM, Williams RB. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. In: California Environmental Protection Agency. California: California Integrated Waste Management Board; 2008.
  6. Kothari R, Pandey A, Kumar S, Tyagi V, Tyagi S. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sust. Energ. Rev. 2014;39:174-195. https://doi.org/10.1016/j.rser.2014.07.011
  7. Kayhanian M, Tchobanoglous G, Brown RC. Biomass conversion processes for energy recovery. In: Kreith F, Goswami DY, eds. Handbook of energy efficiency and renewable energy. Florida: CRC Press; 2007. p. 22.1-22.67.
  8. Han D, Tong X, Currell MJ, Cao G, Jin M, Tong C. Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. J. Geochem. Explor. 2014;136: 24-39. https://doi.org/10.1016/j.gexplo.2013.09.008
  9. Chen HH, Lee AH. Comprehensive overview of renewable energy development in Taiwan. Renew. Sust. Energ. Rev. 2014;37:215-228. https://doi.org/10.1016/j.rser.2014.04.055
  10. Deng Y, Xu J, Liu Y, Mancl K. Biogas as a sustainable energy source in China: Regional development strategy application and decision making. Renew. Sust. Energ. Rev. 2014;35:294-303. https://doi.org/10.1016/j.rser.2014.04.031
  11. Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 2015;45:540-555. https://doi.org/10.1016/j.rser.2015.02.032
  12. Chiu S, Lo I. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ. Sci. Pollut. Res. 2016;23:24435-24450. https://doi.org/10.1007/s11356-016-7159-2
  13. Zhang C, Su H, Baeyens J, Tan T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energ. Rev. 2014;38:383-392. https://doi.org/10.1016/j.rser.2014.05.038
  14. Chernicharo L, Augusto C. Anaerobic reactors. In: Biological Wastewater Treatment Series, London: IWA publishing; 2007.
  15. Gerardi MH. The microbiology of anaerobic digesters. In: Wastewater Microbiology Series. New Jersey: Wiley-Interscience; 2003.
  16. Demirel B, Yenigun O. Two-phase anaerobic digestion processes: A review. J. Chem. Technol. Biotechnol. 2002;77:743-755. https://doi.org/10.1002/jctb.630
  17. Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energ. Combust. Sci. 2008;34:755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  18. Ostrem K. Greening waste: Anaerobic digestion for treating the organic fraction of municipal solid wastes [dissertation]. New York: Columbia Univ.; 2004.
  19. Zieminski K, Frac M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 2012;11:4127-4139.
  20. Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008;7:173-190. https://doi.org/10.1007/s11157-008-9131-1
  21. Abbasi T, Tauseef S, Abbasi SA. Biogas energy. In: Springer Briefs in Environmental Science. New York: Springer Science and Business Media; 2011.
  22. Stewart WC. Three stage, multiple phase anaerobic digestion system and method [Internet]. Google Patents; c2014. Available from: https://patents.google.com/patent/US5500123.
  23. Zhang P, Chen Y, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Res. 2009;43:3735-3742. https://doi.org/10.1016/j.watres.2009.05.036
  24. Sanders WTM. Anaerobic hydrolysis during digestion of complex substrates [dissertation]. Netherlands: Wageningen Univ.; 2001.
  25. Zhang B, Zhang L, Zhang S, Shi H, Cai W. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 2005;26:329-340. https://doi.org/10.1080/09593332608618563
  26. Krishna D, Kalamdhad AS. Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. J. Environ. Chem. Eng. 2014;2:1821-1830. https://doi.org/10.1016/j.jece.2014.07.024
  27. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PN. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ. 2014;123:143-156. https://doi.org/10.1016/j.apenergy.2014.02.035
  28. Buyukkamaci N, Filibeli A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem. 2004;39:1491-1494. https://doi.org/10.1016/S0032-9592(03)00295-4
  29. Cysneiros D, Banks CJ, Heaven S, Karatzas KAG. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour. Technol. 2012;123:263-271. https://doi.org/10.1016/j.biortech.2012.06.060
  30. Pham TN, Nam WJ, Jeon YJ, Yoon HH. Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour. Technol. 2012;124:500-503. https://doi.org/10.1016/j.biortech.2012.08.081
  31. Ramos-Suarez J, Arroyo NC, Gonzalez-Fernandez C. The role of anaerobic digestion in algal biorefineries: Clean energy production, organic waste treatment, and nutrient loop closure. In: Singh B, Kuldeep B, Faizal B, eds. Algae and environmental sustainability. India: Springer; 2015. p. 53-76.
  32. Horiuchi J, Shimizu T, Kanno T, Kobayashi M. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture. Biotechnol. Tech. 1999;13:155-157. https://doi.org/10.1023/A:1008947712198
  33. Fang HH, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002;82:87-93. https://doi.org/10.1016/S0960-8524(01)00110-9
  34. Stronach SM, Rudd T, Lester JN. Anaerobic digestion processes in industrial wastewater treatment. In: Aiba S, Fan LT, Fiechter A, de Klein J, Schügerl K, eds. Biotechnology monographs. Berlin, Germany: Springer Science and Business Media; 2012.
  35. Deublein D, Steinhauser A. Biogas from waste and renewable resources: An introduction. Germany: Wiley-Interscience; 2011.
  36. Burton FL, Stensel HD, Tchobanoglous G. Wastewater engineering: Treatment and resource recovery. 5th ed. New York: McGraw-Hill; 2014.
  37. van Lier JB, Mahmoud N, Zeeman G. Anaerobic wastewater treatment. In: Henze M, van Loosdrecht M, Ekama G, Brdjanovic D, eds. Biological wastewater treatment: Principles, modelling and design. London, UK: IWA Publishing; 2008. p. 415-456.
  38. Yu L, Ma J, Frear C, Zaher U, Chen S. Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system. Google patents. 2013.
  39. Nayono SE. Anaerobic digestion of organic solid waste for energy production [dissertation]. Germany: Karlsruhe Institute of Technology; 2010.
  40. Gallert C, Winter J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 1997;48:405-410. https://doi.org/10.1007/s002530051071
  41. Duan N, Dong B, Wu B, Dai X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study. Bioresour. Technol. 2012;104:150-156. https://doi.org/10.1016/j.biortech.2011.10.090
  42. Nakakubo R, Moller HB, Nielsen AM, Matsuda J. Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ. Eng. Sci. 2008;25:1487-1496. https://doi.org/10.1089/ees.2007.0282
  43. Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013;48:901-911. https://doi.org/10.1016/j.procbio.2013.04.012
  44. Uemura S. Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. Int. J. Environ. Res. 2010;4:33-40.
  45. El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004;95:191-201. https://doi.org/10.1016/j.biortech.2003.07.013
  46. Kim JK, Oh BR, Chun YN, Kim SW. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 2006;102:328-332. https://doi.org/10.1263/jbb.102.328
  47. Lissens G, Vandevivere P, De Baere L, Biey E, Verstraete W. Solid waste digestors: Process performance and practice for municipal solid waste digestion. Water Sci. Technol. 2001;44:91-102.
  48. Angelonidi E, Smith SR. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015;29:549-557. https://doi.org/10.1111/wej.12130
  49. Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digester for solid wastes. In: Mata-Alvarez J, ed. Biomethanization of the organic fraction of municipal solid wastes. London: IWA Publishing; 2003. p. 111-140.
  50. Pandey A. Solid-state fermentation. Biochem. Eng. J. 2003;13:81-84. https://doi.org/10.1016/S1369-703X(02)00121-3
  51. Behrens M, Peuckert J, Meeusen M. Review on standards for biogasification. Opening bio-based markets via standards, labelling and procurement 2014, IEEE: Gent, Belgium.
  52. Tchobanoglous G, Burton FL, Stensel HD, Metcalf & Eddy. Wastewater engineering: Treatment and reuse. New York: McGraw-Hill Education; 2003.
  53. Yen HW, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007;98:130-134. https://doi.org/10.1016/j.biortech.2005.11.010
  54. Turovskiy IS, Mathai P. Wastewater sludge processing. New Jersey: Wiley-Interscience; 2006.
  55. Roos K, Martin J, Moser M. AgSTAR handbook: A manual for developing biogas systems at commercial farms in the United States. US EPA; 2004.
  56. D'Addario E, Pappa R, Pietrangeli B, Valdiserri M. The acidogenic digestion of the organic fraction of municipal solid waste for the production of liquid fuels. Water Sci. Technol. 1993;27:183-192.
  57. Schievano A, Tenca A, Scaglia B, et al. Two-stage vs. single-stage thermophilic anaerobic digestion: Comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 2012;46:8502-8510. https://doi.org/10.1021/es301376n
  58. Dong L, Zhenhong Y, Yongming S. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour. Technol. 2010;101:2722-2728. https://doi.org/10.1016/j.biortech.2009.12.007
  59. Wu LJ, Kobayashi T, Li YY, Xu KQ. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Convers. Manage. 2015;106:1174-1182. https://doi.org/10.1016/j.enconman.2015.10.059
  60. Zhang C, Su H, Tan T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresour. Technol. 2013;145:10-16. https://doi.org/10.1016/j.biortech.2013.03.030
  61. Nagao N, Tajima N, Kawai M, et al. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012;118:210-218. https://doi.org/10.1016/j.biortech.2012.05.045
  62. Haider MR, Zeshan, Yousaf S, Malik RN, Visvanathan C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015;190:451-457. https://doi.org/10.1016/j.biortech.2015.02.105
  63. Kim DH, Oh SE. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Manage. 2011;31:1943-1948. https://doi.org/10.1016/j.wasman.2011.05.007
  64. Zhang L, Lee YW, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011;102:5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
  65. Heo NH, Park SC, Kang H. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J. Environ. Sci. Health Part A. 2004;39:1739-1756. https://doi.org/10.1081/ESE-120037874
  66. Salsali H, Parker W, Sattar S. Influence of staged operation of mesophilic anaerobic digestion on microbial reduction. Proc. Water Environ. Fed. 2005;51-60:4571-4586. https://doi.org/10.2175/193864705783866676
  67. Song YC, Kwon SJ, Woo JH. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. Water Res. 2004;38:1653-1662. https://doi.org/10.1016/j.watres.2003.12.019
  68. Pham Van D, Hoang MG, Pham Phu ST, Fujiwara T. Kinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes. Global J. Environ. Sci. Manage. 2018;4:401-412.
  69. Halalsheh M, Sawajneh Z, Zu'bi M, et al. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: Two-stage versus single-stage reactor. Bioresour. Technol. 2005;96:577-585. https://doi.org/10.1016/j.biortech.2004.06.014
  70. Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour. Technol. 2012;111:122-126. https://doi.org/10.1016/j.biortech.2012.02.019
  71. Nielsen H, Mladenovska Z, Westermann P, Ahring BK. Comparison of two-stage thermophilic ($68^{\circ}C/55^{\circ}C$) anaerobic digestion with one-stage thermophilic ($55^{\circ}C$) digestion of cattle manure. Biotechnol. Bioeng. 2004;86:291-300. https://doi.org/10.1002/bit.20037
  72. Pham Van D, Hoang MG, Pham Phu ST, Fujiwara T. A new kinetic model for biogas production from co-digestion by batch mode. Global J. Environ. Sci. Manage. 2018;4:251-262.
  73. Massanet-Nicolau J, Dinsdale R, Guwy A, Shipley G. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass. Bioresour. Technol. 2015;189:379-383. https://doi.org/10.1016/j.biortech.2015.03.116
  74. Agyeman FO, Tao W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate. J. Environ. Manage. 2014;133:268-274. https://doi.org/10.1016/j.jenvman.2013.12.016
  75. Dinh PV, Fujiwara T, Pham Phu ST, Giang HM. Kinetic of biogas production in co-digestion of vegetable waste, horse dung, and sludge by batch reactors. In: 4th International Conference on Environment and Renewable Energy (ICERE); June 2014; Da Nang.
  76. Aslanzadeh S, Rajendran K, Jeihanipour A, Taherzadeh MJ. The effect of effluent recirculation in a semi-continuous two-stage anaerobic digestion system. Energies 2013;6:2966-2981. https://doi.org/10.3390/en6062966
  77. Kim DH, Cha J, Lee MK, Kim HW, Kim MS. Prediction of bio-methane potential and two-stage anaerobic digestion of starfish. Bioresour. Technol. 2013;141:184-190. https://doi.org/10.1016/j.biortech.2013.02.065
  78. Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl. Biochem. Biotechnol. 2007;143:27-40. https://doi.org/10.1007/s12010-007-0028-1
  79. Kristensen JB, Felby C, Jorgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2009;2:1-10. https://doi.org/10.1186/1754-6834-2-1
  80. Moestedt J, Nordell E, Hallin S, Schnurer A. Two-stage anaerobic digestion for reduced hydrogen sulphide production. J. Chem. Technol. Biotechnol. 2016;91:1055-1062. https://doi.org/10.1002/jctb.4682
  81. Yu HQ, Fang HHP. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 2002;45:201-206.
  82. Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN. A pHand temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energ. 2008;33:4739-4746. https://doi.org/10.1016/j.ijhydene.2008.06.060
  83. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013;143:525-530. https://doi.org/10.1016/j.biortech.2013.06.025
  84. Lindner J, Zielonka S, Oechsner H, Lemmer A. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ. Technol. 2015;36:198-207. https://doi.org/10.1080/09593330.2014.941944
  85. He M, Sun Y, Zou D, et al. Influence of temperature on hydrolysis acidification of food waste. Procedia Environ. Sci. 2012;16:85-94. https://doi.org/10.1016/j.proenv.2012.10.012
  86. Mata-Alvarez J. Biomethanization of the organic fraction of municipal solid wastes. Fundamentals of the anaerobic digestion process. London, UK: IWA publishing; 2003.
  87. Kim M, Gomec CY, Ahn Y, Speece R. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 2003;24:1183-1190. https://doi.org/10.1080/09593330309385659
  88. Kozuchowska J, Evison LM. VFA production in pre-acidification systems without pH control. Environ. Technol. 1995;16:667-675. https://doi.org/10.1080/09593331608616306
  89. Komemoto K, Lim YG, Nagao N, Onoue Y, Niwa C, Toda T. Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manage. 2009;29:2950-2955. https://doi.org/10.1016/j.wasman.2009.07.011
  90. Pavan P, Battistoni P, Cecchi F, Mata-Alvarez J. Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): Performance and kinetic study. Water Sci. Technol. 2000;41:111-118.
  91. Paudel S, Kang Y, Yoo YS, Seo GT. Effect of volumetric organic loading rate (OLR) on $H_2\;and\;CH_4$ production by two-stage anaerobic co-digestion of food waste and brown water. Waste Manage. 2017;61:484-493. https://doi.org/10.1016/j.wasman.2016.12.013
  92. Dareioti MA, Kornaros M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour. Technol. 2014;167:407-415. https://doi.org/10.1016/j.biortech.2014.06.045
  93. Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B. Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 2000;126:1076-1081. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1076)
  94. Veeken AHM, Hamelers BVM. Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. Water Sci. Technol. 2000;41:255-262. https://doi.org/10.2166/wst.2000.0079
  95. Koster IW, Lettinga G. Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes 1988;25:51-59. https://doi.org/10.1016/0269-7483(88)90127-9
  96. Zhang J, Sun K, Wu M, Zhang L. Influence of temperature on performance of anaerobic digestion of municipal solid waste. J. Environ. Sci. 2006;18:810-815. https://doi.org/10.3321/j.issn:1001-0742.2006.04.032
  97. Li W, Guo J, Cheng H, Wang W, Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy 2017;189:613-622. https://doi.org/10.1016/j.apenergy.2016.12.101
  98. Rincon B, Borja R, Gonzalez JM, Portillo MC, Saiz-Jimenez C. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Energ. J. 2008;40:253-261. https://doi.org/10.1016/j.bej.2007.12.019
  99. Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 2011;102:8605-8611. https://doi.org/10.1016/j.biortech.2011.03.084
  100. Park C, Lee C, Kim S, Chen Y, Chase HA. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J. Biosci. Bioeng. 2005;100:164-167. https://doi.org/10.1263/jbb.100.164
  101. Kim SW, Park JY, Kim JK, et al. Development of a modified three-stage methane production process using food wastes. Appl. Biochem. Biotechnol. 2000;84:731-741. https://doi.org/10.1385/ABAB:84-86:1-9:731
  102. Kim JK, Han GH, Oh BR, Chun YN, Eom CY, Kim SW. Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour. Technol. 2008;99:4394-4399. https://doi.org/10.1016/j.biortech.2007.08.031
  103. Zhang J, Loh K-C, Li W, Lim JW, Dai Y, Tong YW. Three-stage anaerobic digester for food waste. Appl. Energ. 2016;194:287-295. https://doi.org/10.1016/j.apenergy.2016.10.116
  104. Pile A. Biosolids technology fact sheet: Multi-stage anaerobic digestion. EPA USA; 2006. p. 2010.
  105. Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Tong YW. Three-stage anaerobic co-digestion of food waste and horse manure. Sci. Rep. 2017;7:1269. https://doi.org/10.1038/s41598-017-01408-w
  106. Arsova L. Anaerobic digestion of food waste: Current status, problems and an alternative product [dissertation]. New York: Columbia Univ.; 2010.
  107. IEA Bioenergy. Energy from biogas task 37 plant list 2015 [Internet]. Available from: http://task37.ieabioenergy.com/plant-list.html.
  108. Ergas SJ, Yeh DH, Hinds GR, Wang M, Dick G. Bioenergy production from MSW by solid-state anaerobic digestion [dissertation]. Florida: Univ. of South Florida; 2017.
  109. Jiang X, Sommer SG, Christensen KV. A review of the biogas industry in China. Energy Policy 2011;39:6073-6081. https://doi.org/10.1016/j.enpol.2011.07.007
  110. Surendra K, Takara D, Hashimoto AG, Khanal SK. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sust. Energ. Rev. 2014;31:846-859. https://doi.org/10.1016/j.rser.2013.12.015
  111. De Baere L, Mattheeuws B. Anaerobic digestion of the organic fraction of municipal solid waste in Europe-Status, experience and prospects. In: Waste management: Recycling and recovery. January 2012. p. 517-526.

Cited by

  1. Enhancement of Methane Production from Vegetable, Fruit and Flower Market Wastes Using Extrusion as Pretreatment and Kinetic Modeling vol.231, pp.3, 2020, https://doi.org/10.1007/s11270-020-04469-2
  2. Treatment of S. cereviseae and dairy cow manure on organic waste for biogas production vol.483, 2020, https://doi.org/10.1088/1755-1315/483/1/012032
  3. Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? vol.12, pp.4, 2020, https://doi.org/10.3390/w12041118
  4. Intensification of biogas production using various technologies: A review vol.44, pp.8, 2020, https://doi.org/10.1002/er.5338
  5. Evaluation of Biogas Production from Bio-Digestion of Organic Wastes vol.51, 2020, https://doi.org/10.4028/www.scientific.net/jera.51.217
  6. Role of Microbial Hydrolysis in Anaerobic Digestion vol.13, pp.21, 2020, https://doi.org/10.3390/en13215555
  7. BIOGAS YIELD AND PRODUCTIVENESS OF SWINE MANURE FOR DIFFERENT REACTOR CONFIGURATIONS vol.40, pp.6, 2020, https://doi.org/10.1590/1809-4430-eng.agric.v40n6p664-673/2020
  8. The significance of microbial community functions and symbiosis in enhancing methane production during anaerobic digestion: a review vol.83, pp.1, 2020, https://doi.org/10.1007/s13199-020-00734-4
  9. Dry Mesophilic Anaerobic Digestion of Separately Collected Organic Fraction of Municipal Solid Waste: Two-Year Experience in an Industrial-Scale Plant vol.9, pp.2, 2021, https://doi.org/10.3390/pr9020213
  10. Effect of Semi-Continuous Anaerobic Digestion on the Substrate Solubilisation of Lignin-Rich Steam-Exploded Ludwigia grandiflora vol.11, pp.10, 2021, https://doi.org/10.3390/app11104452
  11. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development vol.14, pp.10, 2020, https://doi.org/10.3390/en14102742
  12. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy vol.2, pp.2, 2020, https://doi.org/10.3390/fuels2020009
  13. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review vol.287, 2020, https://doi.org/10.1016/j.jenvman.2021.112257
  14. Advanced oxidation processes perspective regarding swine wastewater treatment vol.776, 2020, https://doi.org/10.1016/j.scitotenv.2021.145958
  15. Biogas and biofertilizer production from organic fraction municipal solid waste for sustainable circular economy and environmental protection in Malaysia vol.776, 2020, https://doi.org/10.1016/j.scitotenv.2021.145961
  16. Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey vol.14, pp.17, 2020, https://doi.org/10.3390/en14175423
  17. Anaerobic digestion of waste activated sludge using dynamic membrane at varying substrate concentration reveals new insight towards methanogenic pathway and biofilm formation vol.423, 2020, https://doi.org/10.1016/j.cej.2021.130249
  18. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate vol.793, 2020, https://doi.org/10.1016/j.scitotenv.2021.148461
  19. Diseño de un modelo de biodigestor anaerobio como alternativa para la generación de metano vol.9, pp.2, 2020, https://doi.org/10.36610/j.jsab.2021.090200081
  20. Design of an anaerobic biodigester model as an alternative for methane generation vol.9, pp.2, 2020, https://doi.org/10.36610/j.jsab.2021.090200081x
  21. Sustainable bioprocess technologies for urban waste valorization vol.4, 2020, https://doi.org/10.1016/j.cscee.2021.100166
  22. Characteristics of tofu whey degradation during self-sustaining batch anaerobic process for methane production vol.9, pp.6, 2020, https://doi.org/10.1016/j.jece.2021.106359
  23. Volatile Fatty Acids (VFA) Production from Wastewaters with High Salinity-Influence of pH, Salinity and Reactor Configuration vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040303
  24. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement vol.344, pp.no.pb, 2022, https://doi.org/10.1016/j.biortech.2021.126311
  25. Research progress, trends, and updates on anaerobic digestion technology: A bibliometric analysis vol.331, 2020, https://doi.org/10.1016/j.jclepro.2021.130004
  26. Enrichment of the hydrogenotrophic methanogens for, in-situ biogas up-gradation by recirculation of gases and supply of hydrogen in methanogenic reactor vol.345, 2020, https://doi.org/10.1016/j.biortech.2021.126219
  27. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario vol.288, pp.p3, 2022, https://doi.org/10.1016/j.chemosphere.2021.132604
  28. Estimation of methane production through the anaerobic digestion of greenhouse horticultural waste: A real case study for the Almeria region vol.807, pp.p3, 2020, https://doi.org/10.1016/j.scitotenv.2021.151012
  29. An enhanced anaerobic digestion BioModel calibrated by parameters optimization based on measured biogas plant data vol.312, 2020, https://doi.org/10.1016/j.fuel.2021.122984