DOI QR코드

DOI QR Code

Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI

완전발달 난류 원관 유동에서의 3T 및 7T MRI를 이용한 자기공명온도계의 적용

  • You, Hyung Woo (Dept. of Mechanical Engineering, Seoul National University) ;
  • Baek, Seungchan (Dept. of Mechanical Engineering, Seoul National University) ;
  • Kim, Dong-Hyun (Dept. of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Whal (Dept. of Radiology, Seoul National University Hospital) ;
  • Oh, Sukhoon (Korea Basic Science Institute) ;
  • Hwang, Wontae (Dept. of Mechanical Engineering, Seoul National University)
  • Received : 2020.04.06
  • Accepted : 2020.04.24
  • Published : 2020.04.30

Abstract

Magnetic resonance thermometry (MRT) is a technique capable of measuring three-dimensional mean temperature fields by utilizing temperature-dependent shifts in proton resonance frequency. In this study, experimental verification of the technique is obtained by measuring 3D temperature fields within fully developed turbulent pipe flow, using 3T and 7T MRI scanners. The effect of the proton resonance frequency (PRF) thermal constant is examined in detail.

Keywords

References

  1. Wyatt, C., Soher, B., Maccarini, P., Charles, H.C., Stauffer, P., and Macfall, J., 2009, "Hyperthermia MRI temperature measurement: Evaluation of measurement stabilization strategies for extremity and breast tumors", Int. J. Hyperthermia, Vol. 25(6), pp. 422-433 https://doi.org/10.1080/02656730903133762
  2. Fite, BZ., Liu, Y., Kruse, DE., Caskey, CF., and Walton, JH., 2012, "Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia", PLoS ONE 7(4)
  3. Wassermann, F., Buchenberg, W., Simpson, R., Jung, B. and Grundmann, S., 2014, "Applying Magnetic Resonance Thermometry to Engineering Flows", 17th Int. Symposium on Applications of Laser Techniques to Fluid Mechanics
  4. Spirnak, J., Samland, M., Tremont, B., McQuirter, A. Williams, E., Benson, M., Poppel, B., VerHulst, C., Elkins, C., Burton, L., Eaton, J., and Owkes, M., 2016, "Validation of Magnetic Resonance Thermometry through Experimental and Computational Approaches", AIAA Propulsion and Energy, 10.2514/6.2016-4741.
  5. Benson, M., Poppel, B., Elkins, C., Owkes, M., 2019, "Three-Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry", J. of Turbomachinery, Vol. 141(7)
  6. Peters, R., Hinks, R., and Henkelman, R., 1998, "Ex Vivo Tissue-Type Independence in Proton-Resonance Frequency Shift MR Thermometry", Magnetic Resonance in Medicine, Vol. 40(3), pp. 454-459 https://doi.org/10.1002/mrm.1910400316
  7. Curry, T., Dowdey, J., and Murry, R., Christensen's Physics of Diagnostic Radiology 4th Ed., Lippincott Williams & Wilkins., 1990
  8. Prince, J., Links, J., Medical Imaging Signals and Systems 2nd Ed., Pearson, 2014
  9. Tseng, W., Su, M., Tseng, Y., 2016, "Introduction to Cardiovascular Magnetic Resonance: Technical Principles and Clinical Applications", Acta Cardiol Sin Vol. 32, pp. 129-144
  10. Haacke, E. and Lenz, G., 1987, "Improving MR Image Quality in the Presence of Motion by Using Rephasing Gradients", AJR. American J. roentgenology, Vol. 148(6), pp. 1251-1258. https://doi.org/10.2214/ajr.148.6.1251
  11. Pattany, P., Phillips, J., Chiu, L., Lipcamon, J., Duerk, J., McNally, J., and Mohapatra, S., 1987, "Motion Artifact Suppression Technique (MAST) for MR Imaging", J. Computer Assisted Tomography, Vol.11(3), pp. 369-377 https://doi.org/10.1097/00004728-198705000-00001
  12. Yuan, C., Gullberg, G., and Parker, D., 1989, "Flow-Induced Phase Effects and Compensation Technique for Slice-Selective Pulses", Magnetic Resonance Medicine, Vol. 9, pp. 161-176 https://doi.org/10.1002/mrm.1910090203
  13. Schneider, W., Bernstein, H., and Pople, J., 1958, "Proton Magnetic Resonance Chemical Shift of Free (gaseous) and Associated (liquid) Hydride Molecules", J. Chem. Phys., Vol. 28, pp. 601-607 https://doi.org/10.1063/1.1744199
  14. Muller, N., 1965, "Concerning Structural Models for Water and Chemical-shift Data", J. Chem. Phys., Vol. 43, pp. 2555-2556 https://doi.org/10.1063/1.1697163
  15. Hindman, C., 1966, "Proton Resonance Shift of Water in the Gas and Liquid States", J. Chem. Phys. Vol. 44, pp. 4582-4592 https://doi.org/10.1063/1.1726676
  16. Muller, N. and Reiter, R., 1965, "Temperature Dependence of Chemical Shifts of Protons in Hydrogen Bonds", J. Chem. Phys., Vol. 42, pp. 3265-3269 https://doi.org/10.1063/1.1696408
  17. Buchenberg, W., Wassermann, F., Grundmann, S., Jung, B, and Simpson, R., 2016, "Acquisition of 3D Temperature Distributions in Fluid Flow Using Proton Resonance Frequency Thermometry", Magnetic Resonance in Medicine, Vol. 76, pp. 145-155 https://doi.org/10.1002/mrm.25874
  18. Oh, S., Ryu, Y., Carluccio, G., Sica, C., and Collins, C., 2014, "Measurement of SAR-Induced Temperature Increase in a Phantom and In Vivo with Comparison to Numerical Simulation", Magnetic Resonance in Medicine, Vol. 71, pp. 1923-1931 https://doi.org/10.1002/mrm.24820
  19. Poorter, J., Wagter, C., Deene, Y., Thomsen, C., Stahlberg, F., and Achten, E., 1994, "The Proton-Resonance-Frequency-Shift Method Compared with Molecular Diffusion for Quantitative Measurement of Two-Dimensional TimeDependent Temperature Distribution in a Phantom", J. Magnetic Resonance, Series B, Vol. 103, pp. 234-241 https://doi.org/10.1006/jmrb.1994.1035
  20. Jones, F. and Harris, G., 1992, "ITS-90 Density of Water Formulation for Volumetric Standards Calibration", J. Res. Natl. Inst. Stand. Technol., Vol. 97, pp. 335 https://doi.org/10.6028/jres.097.013
  21. Kestin, J., Sokolov, M., and Wakeham, W., 1978, "Viscosity of Liquid Water in the Range $-8^{\circ}C$ to $150^{\circ}C$", J. Phys. Chem. Ref. Data, Vol. 7(3)
  22. Khoury, G., Schlatter, P., Noorani, A., Fischer, P., Brethouwer, G., and Johansson, A., 2013, "Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers", Flow, Turbulence and Combustion, Vol. 91, pp. 475-495 https://doi.org/10.1007/s10494-013-9482-8
  23. National Electrical Manufacturers Association (NEMA), Determination of signal-to-noise ratio(SNR) in diagnostic magnetic resonance imaging, NEMA standard publication MS 1-2008, 2008
  24. John D'Errico (2019). Inpaint nans, (https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans), MATLAB Central File Exchange. Retrieved July 2nd, 2019.
  25. Kaufman, L., Kramer, D., Crooks, L. Ortendahl, D., 1989, "Measuring Signal-to-Noise Ratios in MR Imaging", Radiology, Vol. 173, pp. 265-267 https://doi.org/10.1148/radiology.173.1.2781018
  26. Murphy, B.W., Carson, P.L., Ellis, J.H., Zhang, Y.T., Hyde, R.J., and Chenevert, T.L., 1993, "Signal-to-Noise Measures for Magnetic Resonance Imagers", Magnetic Resonance Imaging, Vol. 11, pp. 425-428 https://doi.org/10.1016/0730-725X(93)90076-P
  27. Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., and Schoenberg, S.O., 2007, "Measurement of Signal-to-Noise Ratios in MR Images: Influence of multichannel Coils, Parallel Imaging, and Reconstruction Filters", J. Magnetic Resonance Imaging, Vol. 26, pp. 375-385 https://doi.org/10.1002/jmri.20969
  28. Childs, A.S., Malik, S.J., O'Regan, D.P., and Hajnal, J.V., 2013, "Impact of number of channels of RG shimming at 3T", Magn. Reson. Mater. Phy., Vol. 26, pp. 401-410 https://doi.org/10.1007/s10334-012-0360-5
  29. Katscher, U. and Bornert, P., 2006, "Parallel RF transmission in MRI", NRM Biomed., Vol. 19, pp. 393-400
  30. Gruber, B., Froeling, M., Leiner, T., and Klomp, D., 2018, "RF coils: A practical guide for nonphysicists", J. Magn. Reson. Imaging, Vol. 48(3), pp. 590-604 https://doi.org/10.1002/jmri.26187