DOI QR코드

DOI QR Code

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP

Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증

  • Park, Ki-hwan (Aerospace Engineering, Pusan National University) ;
  • Kim, Yeon-bok (Aerospace Engineering, Pusan National University) ;
  • Kim, Jeong (Aerospace Engineering, Pusan National University)
  • Received : 2020.02.11
  • Accepted : 2020.04.20
  • Published : 2020.05.01

Abstract

Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

고 변형률 속도에 대한 소재의 동적 압축 물성은 고속 충돌 및 고속 성형 등 동적 환경에서의 유한요소 해석의 신뢰성 향상을 위해 필수적이다. 일반적으로 고 변형률 속도에 대한 소재의 동적 압축 물성은 SHPB(Split Hopkinson Pressure Bar) 장비를 통해 획득 가능하다. 본 연구에서는 최근 무인 항공기에 확대 적용되고 있는 Woven type CFRP(Carbon Fiber Reinforced Plastic) 소재에 대한 충돌 해석에 대응하기 위해 SHPB 장비를 활용하여 해당 소재의 동적 압축 물성을 획득하였다. 또한 Pulse shaper를 활용하여, Elastic-brittle 특성을 지니는 소재에 대한 일정한 변형률 속도 확보 및 실험 데이터에 대한 신뢰도를 향상시켰다. CFRP 소재의 경우 방향 별 기계적 물성이 다른 이방성 소재이므로 두께 방향과 면내 방향 시편을 제작하여 각각 실험을 수행하였다. SHPB 실험 결과 면내 방향 시편의 경우 일정한 변형률 속도 영역에 도달하기 전, 시편의 파단이 발생하여 데이터의 재현성 및 신뢰성 확보에 어려움이 있는 반면, 두께 방향의 시편의 경우 시편 전·후면 응력일치도가 우수하여 데이터 신뢰도가 높으며, 일정한 변형률 속도 영역을 획득할 수 있다. LS-dyna를 활용한 유한요소해석을 통해, 압력봉으로부터 측정되는 데이터는 시편과 압력봉의 변형에 의해 변형률이 과도하게 예측되는 것을 확인하였다.

Keywords

References

  1. Vascik, P. D., Balakrishnan, H., and Hansman, R. J., "Assessment of air traffic control for urban air mobility and unmanned systems," ICAT International conferences, 2018.
  2. Kabirian, F., Khan, A. S., and Pandey, A., "Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: experiment and constitutive modeling," International Journal of Plasticity, Vol. 55, 2014, pp. 232-246. https://doi.org/10.1016/j.ijplas.2013.11.001
  3. Cadoni, E., D'Aiuto, F., and Albertini, C., "Dynamic behaviour of Advanced High Strength Steels used in the automobile structures," DYMAT International conferences, 2009, pp. 135-141.
  4. Frew, D. J., Forrestal, M. J., and Chen, W., "Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar," Experimental mechanics, Vol. 45, No. 2, 2005, p. 186. https://doi.org/10.1177/0014485105052111
  5. Nemat-Nasser, S., "Introduction to High Strain Rate Testing," ASM Handbook, Mechanical Testing and Evaluation, ASM International, Vol. 8, 2012.
  6. Nemat-Nasser, S., Isaacs, J. B., and Starrett, J. E., "Hopkinson techniques for dynamic recovery experiments," Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 435, No. 1894, 1991, pp. 371-391. https://doi.org/10.1098/rspa.1991.0150
  7. Chen, W. W., and Song, B., "Split Hopkinson (Kolsky) Bar : Design, Testing and Applications," Springer Science & Business Media, 2010.
  8. Tsai, S. W., "Structural Behavior of Composite Materials," Philco Corp Newport Beach Ca Space and Re-Entry Systems, 1964.
  9. Jones, R. M., "Mechanics of composite materials," CRC press, 2014.
  10. Badawi, S. S., "Development of the weaving machine and 3D woven spacer fabric structures for lightweight composites materials," Ph.D. Thesis, Dresden University, Germany, 2007.
  11. Abrate, S., "Impact on laminated composite materials," Applied mechanics reviews, Vol. 44, No. 4, 1991, pp. 155-190. https://doi.org/10.1115/1.3119500
  12. Kander, R. G., and Siegmann, A., "Mechanism of damage and failure in an orthotropic glass/polypropylene composite," Polymer composites, Vol. 13, No. 3, 1992, pp. 154-168. https://doi.org/10.1002/pc.750130303
  13. Natarajan, B., Lee, J., and Shin, S., "Structural analysis of composite wind turbine blade using advanced beam model approach," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 12, 2012, pp. 2245-2250. https://doi.org/10.1007/s12541-012-0298-6
  14. Hwang, J. H., Park, G. Y., Lee, Y. M., and Kim. J. S., "Development of specialized equipments that rescue stick and drop system for disaster and public safety multi-copter," International journal of aerospace system engineering spring conference, 2019.
  15. SK chemicals, Physical properties, "Cured laminate properties (USN and WSN grade)," URL : http://www.skchemicals.com/business/sf_pop.do?no=2
  16. Chen, W. W., and Song, B., "Dynamic characterization of soft materials," Dynamic Failure of Materials and Structures, Springer, Boston, MA, 2009, pp. 1-28.
  17. Pan, Y., Chen, W., and Song, B., "Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens," Experimental Mechanics, Vol. 45, No. 5, 2005, pp. 440-446. https://doi.org/10.1177/0014485105057760
  18. Haider, A. L. Z., Zhao, X. L., and Al-Mihaidi, R., "Mechanical behaviour of normal modulus carbon fibre reinforced polymer (CFRP) and epoxy under impact tensile loads," Procedia Engineering, Vol. 10, 2011, pp. 2453-2458. https://doi.org/10.1016/j.proeng.2011.04.404
  19. Norihiko, T., Nishiwaki, T., and Kawada, H., "Tensile strength of unidirectional CFRP laminate under high strain rate," Advanced Composite Materials, Vol. 16, No. 2, 2007, pp. 167-180. https://doi.org/10.1163/156855107780918937
  20. Hou, J. P., and Ruiz, C., "Measurement of the properties of woven CFRP T300/914 at different strain rates," Composites Science and Technology, Vol. 60, No. 15, 2000, pp. 2829-2834. https://doi.org/10.1016/S0266-3538(00)00151-2
  21. Chen, W. W., and Song, B., "Dynamic characterization of soft materials," Dynamic Failure of Materials and Structures, Springer, Boston, MA, 2009, pp. 1-28.
  22. Johnson, G. R., and Cook, W. H., "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures," Engineering fracture mechanics, Vol. 21, No. 1, 1985, pp. 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  23. Elmahdy, A., and Verleysen, P., "Challenges related to testing of composite materials at high strain rates using the split Hopkinson bar technique," EPJ Web of Conferences, Vol. 183, 2018.
  24. Gilat, A., Schmidt, T. E., and Walker, A. L., "Full field strain measurement in compression and tensile split Hopkinson bar experiments," Experimental Mechanics, Vol. 49, No. 2, 2009, pp. 291-302. https://doi.org/10.1007/s11340-008-9157-x
  25. Verleysen, P., Degrieck, J., Verstraete, T., and Van Slycken, J., "Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials," Experimental Mechanics, Vol. 48, No. 5, 2008, pp. 587-598. https://doi.org/10.1007/s11340-008-9149-x