DOI QR코드

DOI QR Code

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems

고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정

  • Kim, Jae-Hun (School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Ryu, Seungbo (School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Moon, Seung-Hyeon (School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology)
  • 김재훈 (광주과학기술원 지구환경공학부) ;
  • 류승보 (광주과학기술원 지구환경공학부) ;
  • 문승현 (광주과학기술원 지구환경공학부)
  • Received : 2020.02.03
  • Accepted : 2020.03.22
  • Published : 2020.04.30

Abstract

Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

환경오염과 화석연료의 문제로 인한 2차 에너지 변환 및 저장 장치의 개발이 활발하게 진행되고 있다. 이러한 에너지 변환장치들은 전기화학적 시스템을 기본으로 운영되고 있으며 이온교환막은 각 공정의 성능을 결정짓는 중요한 요소이다. 따라서 에너지 시스템의 효율 증대 및 성능 향상을 위해서는 적합한 물성을 갖는 이온교환막 개발이 필요하다. 이러한 이온교환막은 크게 양이온교환막, 음이온교환막, 바이폴라막으로 분류되고 있으며, 이들 막들은 화학적, 물리적, 형태학적 특성에 따라 다양한 용도을 갖고 있다. 본 총설에서는 이온교환막의 주요한 특징과 함께 이들의 제조 방법에 대해 기술했다. 이어서 이온교환막을 이용하여 최근 개발되고 있는 전기화학 시스템에 기반을 둔 역전기 투석, 레독스 흐름 전지, 수전해 공정에 대해서 소개하고, 각 에너지 공정에서 이온교환막이 갖는 역할과 조건에 대해서 설명하였다.

Keywords

References

  1. J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Membr. Sci., 486, 71 (2015). https://doi.org/10.1016/j.memsci.2015.02.039
  2. X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy & Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
  3. W. D. Schroer, "Polymerization of En-sulfur compounds", Methoden der Organischen Chemie, Stuttgart-New York, SG-NY, (1987)
  4. S. Ryu, J.-H. Kim, J.-Y. Lee, and S.-H. Moon, "Investigation of the effects of electric fields on the nanostructure of Nafion and its proton conductivity", J. Mater. Chem. A, 6, 20836 (2018). https://doi.org/10.1039/C8TA06752J
  5. J.-H. Kim, S. Ryu, J.-Y. Lee, and S.-H. Moon, "Preparation of high-conductivity QPPO (quaternary-aminated poly (2,6-dimethyl-1,4-phenyleneoxide)) membranes by electrical treatment", J. Membr. Sci., 553, 82 (2018). https://doi.org/10.1016/j.memsci.2017.12.009
  6. J.-Y. Lee, J.-H. Lee, S. Ryu, S.-H. Yun, and S.-H. Moon, "Electrically aligned ion channels in cation exchange membranes and their polarized conductivity", J. Membr. Sci., 478, 19-24 (2015). https://doi.org/10.1016/j.memsci.2014.12.049
  7. S. Mayavan, H.-S. Jang, M.-J. Lee, S. H. Choi, and S.-M. Choi, "Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation", J. Mater. Chem. A, 1, 3489 (2013). https://doi.org/10.1039/c2ta00619g
  8. B. L. Rivas and C. Munoz, "Synthesis and metal ion adsorption properties of poly(4-sodium styrene sulfonate-co-acrylic acid)", J. Appl. Polym. Sci., 114, 1587 (2009). https://doi.org/10.1002/app.30722
  9. M. Yazdimamaghani, M. Razavi, M. Mozafari, D. Vashaee, H. Kotturi, and L. Tayebi, "Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS)", J. Mater. Sci. Mater. Med., 26, 274 (2015). https://doi.org/10.1007/s10856-015-5599-8
  10. S. Turmanova, K. Vassilev, and S. Boneva, "Preparation, structure and properties of metal-copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films", React. Funct. Polym., 68, 759 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.11.015
  11. B. Gupta, F. N. Buchi, and G. G. Scherer, "Materials research aspects of organic solid proton conductors", Solid State Ion., 61, 213 (1993). https://doi.org/10.1016/0167-2738(93)90356-8
  12. Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, "Sulfonated and crosslinked polyphosphazene-basedproton-exchange membranes", J. Membr. Sci., 154, 175 (1999). https://doi.org/10.1016/S0376-7388(98)00282-8
  13. K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chem., 94, 224 (1982). https://doi.org/10.1002/ange.19820940335
  14. K.-D. Kreuer, S. J. P. E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  15. K. A. Mauritz, "Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides", Mater. Sci. Eng. C, 6, 121 (1998). https://doi.org/10.1016/S0928-4931(98)00042-3
  16. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem, 41, 1137 (2011). https://doi.org/10.1007/s10800-011-0348-2
  17. T. Mohammadi and M. Skyllas-Kazacos, "Characterisation of novel composite membrane for redox flow battery applications", J. Membr. Sci., 98, 77 (1995). https://doi.org/10.1016/0376-7388(94)00178-2
  18. S. C. Chieng, M. Kazacos, and M. Skyllas-Kazaco, "Modification of daramic, microporous separator, for redox flow battery applications", J. Membr. Sci., 75, 81 (1992). https://doi.org/10.1016/0376-7388(92)80008-8
  19. J. Xi, Z. Wu, X. Qiu, and L. Chen, "$Nafion/SiO_2$ hybrid membrane for vanadium redox flow battery", J. Power Source, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  20. M. Gil, X. Ji, X. Li, H. Na, J. Eric Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., 234, 75 (2004). https://doi.org/10.1016/j.memsci.2003.12.021
  21. X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen, and X. Qiu, "Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries", J. Phys. Chem. B, 109, 20310 (2005). https://doi.org/10.1021/jp054092w
  22. X. Li, C. Zhao, H. Lu, Z. Wang, and H. Na, "Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application", Polym., 46, 5820 (2005). https://doi.org/10.1016/j.polymer.2005.04.067
  23. J. Roziere and D. J. Jones, "Non-fluorinated polymer materials for proton exchange membrane fuel cells", Annu. Rev. Mater. Res., 33, 503 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154657
  24. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates fornew proton exchange memranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  25. L. Coury, "Conductance measurements part 1: theory", Curr. Sep., 18, 91-96 (1999).
  26. K. Gong, Q. Fang, S. Gu, S. F. Y. Li, and Y. Yan, "Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs", Energy & Environ. Sci., 8, 3515 (2015). https://doi.org/10.1039/C5EE02341F
  27. Q. Liu, A. E. S. Sleightholme, A. A. Shinkle, Y. Li, and L. T. Thompson, "Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries", Electrochem. Commun., 11, 2312 (2009). https://doi.org/10.1016/j.elecom.2009.10.006
  28. S.-H. Shin, Y. Kim, S.-H. Yun, S. Maurya, and S.-H. Moon, "Influence of membrane structure on the operating current densities of non-aqueous redox flow batteries: Organic-inorganic composite membranes based on a semi-interpenetrating polymer network", J. Power Source, 296, 245 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.045
  29. S. Maurya, S.-H. Shin, K.-W. Sung, and S.-H. Moon, "Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications", J. Power Source, 255, 325 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.047
  30. D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016). https://doi.org/10.1016/j.electacta.2016.10.041
  31. Y. Li, J. Sniekers, J. C. Malaquias, C. Van Goethem, K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", J. Power Source, 378, 338 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.049
  32. E. Guler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  33. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  34. J. Y. Lee, J. H. Kim, J. H. Lee, S. Kim, and S. H. Moon, "Morphologically aligned cation-exchange membranes by a pulsed electric field for reverse electrodialysis", Environ. Sci. Technol., 49, 8872 (2015). https://doi.org/10.1021/acs.est.5b01151
  35. J. F. Walther and N. Y. Skaneateles, "Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell", US Patent 4,311,771, January 19 (1982).
  36. J.-H. Kim, J.-H. Lee, S. Maurya, S.-H. Shin, J.-Y. Lee, I. S. Chang, and S.-H. Moon, "Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system", Electrochem. Commun., 72, 157 (2016). https://doi.org/10.1016/j.elecom.2016.09.025
  37. F. Hanada, K. Hirayama, N. Ohmura, and S. Tanaka, "Bipolar membrane and method for its production", US Patent 5,221,455, June 22 (1993).
  38. R. Fu, T. Xu, G. Wang, W. Yang, and Z. Pan, "PEG-catalytic water splitting in the interface of a bipolar membrane", J. Colloid Interface Sci., 263, 386 (2003). https://doi.org/10.1016/S0021-9797(03)00307-2
  39. R. Q. Fu, Y. H. Xue, T. W. Xu, and W. H. Yang, "Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane", J. Colloid Interface Sci., 285, 281 (2005). https://doi.org/10.1016/j.jcis.2004.11.050
  40. J. Balster, R. Sumbharaju, S. Srikantharajah, I. Punt, D. F. Stamatialis, V. Jordan, and M. Wessling, "Asymmetric bipolar membrane: A tool to improve product purity", J. Membr. Sci., 287, 246 (2007). https://doi.org/10.1016/j.memsci.2006.10.042
  41. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", Int. J. Hydrog. Energy, 38, 4901 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
  42. H. Ito, T. Maeda, A. Nakano, and H. Takenaka, "Properties of Nafion membranes under PEM water electrolysis conditions", Int. J. Hydrog. Energy, 36, 10527 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.127
  43. S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, and V. N. Fateev, "Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis", Int. J. Hydrog. Energy, 34, 5986 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.047
  44. M. Faraj, M. Boccia, H. Miller, F. Martini, S. Borsacchi, M. Geppi, and A. Pucci, "New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis", Int. J. Hydrog. Energy, 37, 14992 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.012
  45. J. Hnat, M. Paidar, J. Schauer, J. Zitka, and K. Bouzek, "Polymer anion selective membranes for electrolytic splitting of water. Part I: Stability of ion-exchange groups and impact of the polymer binder", J. Appl. Electrochem., 41, 1043 (2011). https://doi.org/10.1007/s10800-011-0309-9
  46. N. Lee, D. T. Duong, and D. Kim, "Cyclic ammonium grafted poly (arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency", Electrochim. Acta, 271, 150 (2018). https://doi.org/10.1016/j.electacta.2018.03.117