References
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7-34. https://doi.org/10.3322/caac.21551
- Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9:217-22. https://doi.org/10.2991/jegh.k.191008.001
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108. https://doi.org/10.3322/caac.21262
- Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol. 2018;15:536-54. https://doi.org/10.1038/s41575-018-0033-6
- Soussi T, Ishioka C, Claustres M, Beroud C. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer. 2006;6:83-90. https://doi.org/10.1038/nrc1783
- Xu W, Yu J, Wong VW. Mechanism and prediction of HCC development in HBV infection. Best Pract Res Clin Gastroenterol. 2017;31:291-8. https://doi.org/10.1016/j.bpg.2017.04.011
- Chow HC, So TH, Choi HCW, Lam KO. Literature review of traditional Chinese medicine herbs-induced liver injury from an oncological perspective with RUCAM. Integr Cancer Ther. 2019;18:1534735419869479.
- Xi SY, Minuk GY. Role of traditional Chinese medicine in the management of patients with hepatocellular carcinoma. World J Hepatol. 2018;10:799-806. https://doi.org/10.4254/wjh.v10.i11.799
- Heo J, 2012. In: Kang C.H. (Eds.), DonguiBogam (Principles and Practice of Eastern Medicine). Seoul, Korea, Bubin Publishers Co.
- Han SI, Kang BK. Antitumor effects of bigihwan on tumor cells derived from leukemia and lymphoma patients. J Int Korean Med. 1991;12:1-15.
- Kang DG, Kang BK. Antitumor effects of sigbunhwan and bigihwan on tumor cells derived from leukemia and lymphoma patients. J Int Korean Med. 1991;12:96-112.
- Kim HY, Ko SJ, Bang CH, Shin SH, Lee DY, Lee I. Effects of daechilgi-tang on glutamate-induced apoptosis in C6 glial cells. Korean J Orient Int Med. 2010;31:693-705.
- Baik TH, Lee I. An experimental study on the effects of mkwhyangbinrang-whan. J Int Korean Med. 1997;18:373-90.
- Wang Y, Zhong J, Bai J, Tong R, An F, Jiao P, He L, Zeng D, Long E, Yan J, Yu J, Cai L. The application of natural products in cancer therapy by targeting apoptosis pathways. Curr Drug Metab. 2018;19:739-49. https://doi.org/10.2174/1389200219666180511154722
- D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582-92. https://doi.org/10.1002/cbin.11137
- Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-induced endoplasmic reticulum stress: Cross-talk between ferroptosis and apoptosis. Mol Cancer Res. 2018;16:1073-6. https://doi.org/10.1158/1541-7786.MCR-18-0055
- Yan X, Zhou R, Ma Z. Autophagy-cell survival and death. Adv Exp Med Biol. 2019;1206:667-96. https://doi.org/10.1007/978-981-15-0602-4_29
- Lin L, Baehrecke EH. Autophagy, cell death, and cancer. Mol Cell Oncol. 2015;2:e985913. https://doi.org/10.4161/23723556.2014.985913
- Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting autophagy to overcome human diseases. Int J Mol Sci. 2019;20:E725. https://doi.org/10.3390/ijms20030725
- Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol. 2018;153:51-61. https://doi.org/10.1016/j.bcp.2018.02.007
- Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci. 2015;72:4721-57. https://doi.org/10.1007/s00018-015-2034-8
- Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177:1682-99. https://doi.org/10.1016/j.cell.2019.05.026
- Castino R, Bellio N, Follo C, Murphy D, Isidoro C. Inhibition of PI3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci. 2010;117:152-62. https://doi.org/10.1093/toxsci/kfq170
- Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct. 1998; 23:33-42. https://doi.org/10.1247/csf.23.33
- Biel TG, Rao VA. Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells. Oncotarget. 2017;9:995-1011. https://doi.org/10.18632/oncotarget.23171
- Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462:245-53. https://doi.org/10.1016/j.abb.2007.03.034
- Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease. Neurosci Lett. 2019;705:7-13. https://doi.org/10.1016/j.neulet.2019.04.029
- Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9-14. https://doi.org/10.1038/nrm3028
- Wanders RJ, Waterham HR, Ferdinandusse S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2016;3:83.
- Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation-a metabolic pathway with multiple functions. Biochim Biophys Acta. 2006;1763:1413-26. https://doi.org/10.1016/j.bbamcr.2006.08.034
- Du H, Kim S, Hur YS, Lee MS, Lee SH, Cheon CI. A cytosolic thioredoxin acts as a molecular chaperone for peroxisome matrix proteins as well as antioxidant in peroxisome. Mol Cells 2015;38:187-94. https://doi.org/10.14348/molcells.2015.2255
- Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012;1822:1363-73. https://doi.org/10.1016/j.bbadis.2011.12.001
- Honsho M, Yamashita S, Fujiki Y. Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. Biochim Biophys Acta. 2016;1863:984-91. https://doi.org/10.1016/j.bbamcr.2015.09.032
- Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta. 2016;1863:922-33. https://doi.org/10.1016/j.bbamcr.2015.11.015
- Giannopoulou EA, Emmanouilidis L, Sattler M, Dodt G, Wilmanns M. Towards the molecular mechanism of the integration of peroxisomal membrane proteins. Biochim Biophys Acta. 2016;1863:863-9. https://doi.org/10.1016/j.bbamcr.2015.09.031
- Kiel JA, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic. 2006;7:1291-303. https://doi.org/10.1111/j.1600-0854.2006.00479.x
- Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie. 2014;98:16-28. https://doi.org/10.1016/j.biochi.2013.12.009
- Bolhassani A. Cancer chemoprevention by natural carotenoids as an efficient strategy. Anticancer Agents Med Chem. 2015;15:1026-231. https://doi.org/10.2174/1871520615666150302125707
- Badrinath N. Yoo SY. Mitochondria in cancer: In the aspects of tumorigenesis and targeted therapy. Carcinogenesis. 2018;39:1419-30. https://doi.org/10.1093/carcin/bgy148
- Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018;80:50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
- Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med. 2017:104:144-64. https://doi.org/10.1016/j.freeradbiomed.2017.01.004
- Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798-811. https://doi.org/10.1038/sj.onc.1209608
- Hata AN, Engelman JA, Faber AC. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015;5:475-87. https://doi.org/10.1158/2159-8290.CD-15-0011