DOI QR코드

DOI QR Code

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Zhu, Kexuan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Chen, Lin (Department of Physiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Ouyang, Liufeng (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Chen, Cuihua (Research Center, Basic Medical College, Nanjing University of Chinese Medicine) ;
  • Gu, Ling (Research Center, Basic Medical College, Nanjing University of Chinese Medicine) ;
  • Jiang, Yucui (Research Center, Basic Medical College, Nanjing University of Chinese Medicine) ;
  • Wang, Zhongli (School of Nursing, Jiujiang University) ;
  • Lin, Zixuan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Zhang, Qiang (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Shao, Xiao (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Dai, Jianguo (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine) ;
  • Zhao, Yunan (Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine)
  • 투고 : 2018.12.31
  • 심사 : 2019.02.27
  • 발행 : 2020.05.15

초록

Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

키워드

참고문헌

  1. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  3. Yun TK. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55. https://doi.org/10.1016/s1470-2045(00)00196-0
  4. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  5. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-9. https://doi.org/10.1016/j.jgr.2014.12.005
  6. Qi LW, Wang CZ, Du GJ, Zhang ZY, Calway T, Yuan CS. Metabolism of ginseng and its interactions with drugs. Curr Drug Metab 2011;12:818-22. https://doi.org/10.2174/138920011797470128
  7. Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J. Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chin Med 2012;7:2. https://doi.org/10.1186/1749-8546-7-2
  8. Ma GD, Chiu CH, Hsu YJ, Hou CW, Chen YM, Huang CC. Changbai mountain ginseng (Panax ginseng C.A. Mey) extract supplementation improves exercise performance and energy utilization and decreases fatigue-associated parameters in mice. Molecules 2017;22:237. https://doi.org/10.3390/molecules22020237
  9. Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. Anti-fatigue effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in mice. Biol Pharm Bull 2015;38:1415-9. https://doi.org/10.1248/bpb.b15-00230
  10. Choi JY, Woo TS, Yoon SY, Ike Campomayor Dela P, Choi YJ, Ahn HS, Lee YS, Yu GY, Cheong JH. Red ginseng supplementation more effectively alleviates psychological than physical fatigue. J Ginseng Res 2011;35:331-8. https://doi.org/10.5142/jgr.2011.35.3.331
  11. Tan SJ, Li N, Zhou F, Dong QT, Zhang XD, Chen BC, Yu Z. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J Surg Res 2014;191:344-9. https://doi.org/10.1016/j.jss.2014.04.042
  12. Lee N, Lee SH, Yoo HR, Yoo HS. Anti-fatigue effects of enzyme-modified ginseng extract: a randomized, double-blind, placebo controlled trial. J. Altern Complement Med 2016;22:859-64. https://doi.org/10.1089/acm.2016.0057
  13. Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebocontrolled trial. PLoS One 2013;8:e61271. https://doi.org/10.1371/journal.pone.0061271
  14. Lee NH, Jung HC, Lee S. Red ginseng as an ergogenic aid: a systematic review of clinical trials. J Exerc Nutrition Biochem 2016;20:13-9. https://doi.org/10.20463/jenb.2016.0034
  15. Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a treatment for fatigue: a systematic review. J Altern Complement Med 2018;24:624-33. https://doi.org/10.1089/acm.2017.0361
  16. Bach HV, Kim J, Myung SK, Cho YA. Efficacy of ginseng supplements on fatigue and physical performance: a Meta-analysis. J Korean Med Sci 2016;31:1879-86. https://doi.org/10.3346/jkms.2016.31.12.1879
  17. Bae JW, Lee MH. Effect and putative mechanism of action of ginseng on the formation of glycated hemoglobin in vitro. J Ethnopharmacol 2004;91:137-40. https://doi.org/10.1016/j.jep.2003.12.008
  18. Li Z, Chen X, Niwa Y, Sakamoto S, Nakaya Y. Involvement of $Ca^{2+}$ activated $K^{+}$ channels in ginsenosides-induced aortic relaxation in rats. J Cardiovasc Pharmacol 2001;37:41-7. https://doi.org/10.1097/00005344-200101000-00005
  19. Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chem Biol 2011;6:34-46. https://doi.org/10.1021/cb100294v
  20. Zhao YN, Wang ZL, Dai JG, Chen L, Huang YF. Preparation and quality assessment of high-purity ginseng total saponins by ion exchange resin combined with macroporous adsorption resin separation. Chin J Nat Med 2014;12:382-92. https://doi.org/10.1016/S1875-5364(14)60048-0
  21. Ouyang LF, Wang ZL, Dai JG, Chen L, Zhao YN. Determination of total ginsenosides in ginseng extracts using charged aerosol detection with post-column compensation of the gradient. Chin J Nat Med 2014;12:857-68. https://doi.org/10.1016/S1875-5364(14)60129-1
  22. Joo EJ, Ha YW, Shin H, Son SH, Kim YS. Generation and characterization of monoclonal antibody to ginsenoside Rg3. Biol Pharma Bull 2009;32:548-52. https://doi.org/10.1248/bpb.32.548
  23. Leung SM, Pitts RL. A novel approach using MALDI-TOF/TOF mass spectrometry and prestructured sample supports (AnchorChip Technology) for proteomic profiling and protein identification. Methods Mol Biol 2008;441:57-70. https://doi.org/10.1007/978-1-60327-047-2_4
  24. Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide identification with Mascot percolator. J Proteome Res 2009;8:3176-81. https://doi.org/10.1021/pr800982s
  25. Li J, Schantz A, Schwegler M, Shankar G. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by $Octet^{(R)}$ biolayer interferometry. J Pharm Biomed Anal 2011;54:286-94. https://doi.org/10.1016/j.jpba.2010.08.022
  26. Ladbury JE, Chowdhry BZ. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 1996;3:791-801. https://doi.org/10.1016/S1074-5521(96)90063-0
  27. Zhao YN, Zhang Q, Shao X, Ouyang LF, Wang X, Zhu KX, Chen L. Decreased glycogen content might contribute to chronic stress induced atrophy of hippocampal astrocyte volume and depression like behavior in rats. Sci Rep 2017;7:43192. https://doi.org/10.1038/srep43192
  28. Xu L, Wang CY, Lv L, Liu KX, Sun HJ, Han GZ. Pharmacokinetics of phosphocreatine and its active metabolite creatine in the mouse plasma and myocardium. Pharmacol Rep 2014;66:908-14. https://doi.org/10.1016/j.pharep.2014.05.013
  29. Di Pierro D, Tavazzi B, Perno CF, Bartolini M, Balestra E, Calio R, Giardina B, Lazzarino G. An ion-pairing high-performance liquid chromatographic method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal Biochem 1995;231:407-12. https://doi.org/10.1006/abio.1995.0071
  30. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, et al. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 2009;12:791-800. https://doi.org/10.2174/138620709789104915
  31. Callies O, Hernandez Daranas A. Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 2016;33:881-904. https://doi.org/10.1039/c5np00094g
  32. Lahiri SD, Wang PF, Babbitt PC, McLeish MJ, Kenyon GL, Allen KN. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-$Mg^{2+}$-$NO^{3-}$-creatine transition-state analogue complex. Biochemistry 2002;41:13861-7. https://doi.org/10.1021/bi026655p
  33. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011;40:1271-96. https://doi.org/10.1007/s00726-011-0877-3
  34. Sahlin K, Harris RC. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 2011;40:1363-7. https://doi.org/10.1007/s00726-011-0856-8
  35. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Intergr Comp Physiol 2004;287:R502-16. https://doi.org/10.1152/ajpregu.00114.2004
  36. Hall MM, Rajasekaran S, Thomsen TW, Peterson AR. Lactate: friend or foe. PM R 2016;8:S8-15. https://doi.org/10.1016/j.pmrj.2015.10.018
  37. Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, Rodriguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014;17:76-100. https://doi.org/10.1016/j.mito.2014.05.007
  38. McFedries A, Schwaid A, Saghatelian A. Methods for the elucidation of protein-small molecule interactions. Chem Biol 2013;20:667-73. https://doi.org/10.1016/j.chembiol.2013.04.008
  39. Rask-Andersen M, Masuram S, Schioth HB. The druggable genome: evaluation of drug targets in clinial trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 2014;54:9-26. https://doi.org/10.1146/annurev-pharmtox-011613-135943
  40. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, et al. Target identification using drug affinity responsive target stability (DARTS). PNAS 2009;106:21984-9. https://doi.org/10.1073/pnas.0910040106
  41. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013;341:84-7. https://doi.org/10.1126/science.1233606
  42. Strickland EC, Geer MA, Tran DT, Adhikari J, West GM, DeArmond PD, Xu Y, Fitzgerald MC. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 2013;8:148-61. https://doi.org/10.1038/nprot.2012.146
  43. Ong SE, Li X, Schenone M, Schreiber SL, Carr SA. Identifying cellular targets of small-molecule probes and drugs with biochemical enrichment and SILAC. Methods Mol Biol 2012;803:129-40. https://doi.org/10.1007/978-1-61779-364-6_9
  44. Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013;52:2744-92. https://doi.org/10.1002/anie.201208749
  45. Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep 2016;33:719-30. https://doi.org/10.1039/c5np00107b
  46. Futamura Y, Muroi M, Osada H. Target identification of small molecules based on chemical biology approaches. Mol Biosyst 2013;9:897-914. https://doi.org/10.1039/c2mb25468a
  47. Huber KV, Olek KM, Muller AC, Tan CS, Bennett KL, Colinge J, Superti-Furga G. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat Methods 2015;12:1055-7. https://doi.org/10.1038/nmeth.3590
  48. Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, Huang J. Drug affinity responsive target stability (DARTS) for small molecule target identification. Methods Mol Biol 2015;1263:287-98. https://doi.org/10.1007/978-1-4939-2269-7_22
  49. Bayer J, Glascher J, Finsterbusch J, Schulte LH, Sommer T. Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nat Commun 2018;9:1220. https://doi.org/10.1038/s41467-018-03679-x
  50. Cools R, D'Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011;69:e113-25. https://doi.org/10.1016/j.biopsych.2011.03.028
  51. Ashor AW. Inverted U shaped effect of nicotine on the severity of depressive symptoms: a population-based survey. J Young Pharm 2013;5:60-3. https://doi.org/10.1016/j.jyp.2013.06.004
  52. Zuardi AW, Rodrigues NP, Silva AL, Bernardo SA, Hallak JEC, Guimaraes FS, Crippa JAS. Inverted U-shaped dose-response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 2017;8:259. https://doi.org/10.3389/fphar.2017.00259
  53. Wang B, Pu Y, Xu B, Tao J, Wang Y, Zhang T, Wu P. Self-microemulsifying drug delivery system improved oral bioavailability of 20(S)-protopanaxadiol: from preparation to evaluation. Chem Pharm Bull (Tokyo) 2015;63:688-93. https://doi.org/10.1248/cpb.c15-00247
  54. Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W, Jost C, van Deursen J, Perryman B, Pette D. Altered $Ca^{2+}$ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 1997;89:93-103. https://doi.org/10.1016/S0092-8674(00)80186-5
  55. In't Zandt HJ, de Groof AJ, Renema WK, Oerlemans FT, Klomp DW, Wieringa B, Heerschap A. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. J Physiol 2003;548:847-58. https://doi.org/10.1113/jphysiol.2002.034538
  56. Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M, Ingwall JS. Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol 2011;589:5193-211. https://doi.org/10.1113/jphysiol.2011.212829
  57. Akki A, Su J, Yano T, Gupta A, Wang Y, Leppo MK, Chacko VP, Steenbergen C, Weiss RG. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. Am J Physiol Heart Circ Physiol 2012;303:H844-52. https://doi.org/10.1152/ajpheart.00268.2012
  58. Kitzenberg D, Colgan SP, Glover LE. Creatine kinase in ischemic and inflammatory disorders. Clin Trans Med 2016;5:31.
  59. Guzun G, Timohhina N, Tepp K, Gonzalez-Granillo M, Shevchuk I, Chekulayev V, Kuznetsov AV, Kaambre T, Saks VA. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 2011;40:1333-48. https://doi.org/10.1007/s00726-011-0854-x
  60. Lindinger MI, Kowalchuk JM, Heigenhauser GJ. Applying physicochemical principles to skeletal muscle acid-base status. Am J Physiol Regul Intergr Comp Physiol 2005;289:R891-4. https://doi.org/10.1152/ajpregu.00225.2005
  61. Van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 2010;199:499-508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
  62. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 1992;281(1):21-40. https://doi.org/10.1042/bj2810021
  63. Wallimann T, Tokarska-Schlattner M, Neumann D, Epand RM, Epand RF, Andres RH, Widmer H. The phospho-creatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals and enhancement by creatine supplementation. In: Saks VA, editor. Molecular systems bioenergetics: energy for life. Weinheim: Wiley; 2007. p. 195-264.
  64. Clarkson PM, Sayers SP. Etiology of exercise-induced muscle damage. Can J Appl Physiol 1999;24:234-48. https://doi.org/10.1139/h99-020
  65. Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact 2014;14:68-77.
  66. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010;48:757-67. https://doi.org/10.1515/CCLM.2010.179

피인용 문헌

  1. Analysis of biomarkers and metabolic pathways in patients with unstable angina based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry vol.22, pp.5, 2020, https://doi.org/10.3892/mmr.2020.11476
  2. Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction vol.49, pp.6, 2020, https://doi.org/10.1142/s0192415x21500701
  3. Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues vol.45, pp.4, 2021, https://doi.org/10.1016/j.jgr.2020.12.007
  4. Characterization of the Noncovalent Interactions between Lysozyme and Panaxadiol Glycosides by Intensity-Fading - Matrix-Assisted Laser Desorption Ionization - Mass Spectrometry (IF-MALDI-MS) vol.54, pp.15, 2021, https://doi.org/10.1080/00032719.2020.1867995