DOI QR코드

DOI QR Code

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Ji, Y.Z. (Department of Materials Science and Engineering, The Pennsylvania State University) ;
  • Liu, W.B. (Department of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Chen, H. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Yang, Z.G. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Zhang, C. (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Chen, L.Q. (Department of Materials Science and Engineering, The Pennsylvania State University)
  • Received : 2019.02.19
  • Accepted : 2019.07.09
  • Published : 2020.01.25

Abstract

The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

Keywords

References

  1. P. Yvon, M. Le Flem, C. Cabet, J.L. Seran, Structural materials for next generation nuclear systems: challenges and the path forward, Nucl. Eng. Des. 294 (2015) 161-169. https://doi.org/10.1016/j.nucengdes.2015.09.015
  2. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (2009) 12-19. https://doi.org/10.1016/S1369-7021(09)70294-9
  3. P. Yvon, F. Carre, Structural materials challenges for advanced reactor systems, J. Nucl. Mater. 385 (2) (2009) 217-222. https://doi.org/10.1016/j.jnucmat.2008.11.026
  4. A. Kostka, K. Tak, R. Hellmig, Y. Estrin, G. Eggeler, On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels, Acta Mater. 55 (2) (2007) 539-550. https://doi.org/10.1016/j.actamat.2006.08.046
  5. M. Nastar, F. Soisson, Radiation-induced segregation, Compr. Nucl. Mater. 1 (2012) 471-496.
  6. Y. Yang, K.G. Field, T.R. Allen, J.T. Busby, Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe-Cr-Ni alloys, J. Nucl. Mater. 473 (2016) 35-53. https://doi.org/10.1016/j.jnucmat.2016.02.007
  7. Z. Lu, R.G. Faulkner, G. Was, B.D. Wirth, Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels, Scripta Mater. 58 (10) (2008) 878-881. https://doi.org/10.1016/j.scriptamat.2008.01.004
  8. J.P. Wharry, G.S. Was, A systematic study of radiation-induced segregation in ferritic-martensitic alloys, J. Nucl. Mater. 442 (1-3) (2013) 7-16. https://doi.org/10.1016/j.jnucmat.2013.07.071
  9. G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, T.R. Allen, Assessment of radiation-induced segregation mechanisms in austenitic and ferriticemartensitic alloys, J. Nucl. Mater. 411 (1-3) (2011) 41-50. https://doi.org/10.1016/j.jnucmat.2011.01.031
  10. K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, T.R. Allen, Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel, J. Nucl. Mater. 445 (1-3) (2014) 143-148. https://doi.org/10.1016/j.jnucmat.2013.10.056
  11. R. Hu, G.D.W. Smith, E.A. Marquis, Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2at.% Cr alloy, Acta Mater. 61 (9) (2013) 3490-3498. https://doi.org/10.1016/j.actamat.2013.02.043
  12. K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, T.R. Allen, Dependence on grain boundary structure of radiation induced segregation in a 9wt.% Cr model ferritic/martensitic steel, J. Nucl. Mater. 435 (1-3) (2013) 172-180. https://doi.org/10.1016/j.jnucmat.2012.12.026
  13. R.A. Johnson, N.Q. Lam, Solute segregation in metals under irradiation, Phys. Rev. B 13 (10) (1976) 4364-4375. https://doi.org/10.1103/PhysRevB.13.4364
  14. A.D. Marwick, Calculation of bias due to solute redistribution in an irradiated binary alloy: surfaces of a thin foil, J. Nucl. Mater. 135 (1) (1985) 68-76. https://doi.org/10.1016/0022-3115(85)90438-6
  15. R.C.P.A.D. Marwick, M.E. Horton, Radiation-induced Segregation in Fe-Cr-Ni Alloys, Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys, 1983.
  16. A.D. Marwick, Segregation in irradiated alloys : the inverse Kirkendall effect and the effect of constitution on void swelling, J. Phys. F Met. Phys. 8 (9) (1978) 1849-1861. https://doi.org/10.1088/0305-4608/8/9/008
  17. P.R. Okamoto, L.E. Rehn, Radiation-induced segregation in binary and ternary alloys, J. Nucl. Mater. 83 (1) (1979) 2-23. https://doi.org/10.1016/0022-3115(79)90587-7
  18. H. Wiedersich, P.R. Okamoto, N.Q. Lam, A theory of radiation-induced segregation in concentrated alloys, J. Nucl. Mater. 83 (1) (1979) 98-108. https://doi.org/10.1016/0022-3115(79)90596-8
  19. S.M. Murphy, Contribution of interstitial migration to segregation in concentrated alloys, J. Nucl. Mater. 182 (1991) 73-86. https://doi.org/10.1016/0022-3115(91)90416-5
  20. S.M. Murphy, J.M. Perks, Analysis of phosphorus segregation in ion-irradiated nickel, J. Nucl. Mater. 171 (2-3) (1990) 360-372. https://doi.org/10.1016/0022-3115(90)90382-W
  21. S.M. Murphy, A model for segregation in dilute alloys during irradiation, J. Nucl. Mater. 168 (1-2) (1989) 31-42. https://doi.org/10.1016/0022-3115(89)90561-8
  22. S.M.M.J.M. Perks, Modelling the Major Element Radiation-Induced Segregation in Concentrated Fe-Cr-Ni Alloys, Materials for Nuclear Reactor Core Applications, 1987.
  23. T.R. Allen, G.S. Was, Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys, Acta Mater. 46 (10) (1998) 3679-3691. https://doi.org/10.1016/S1359-6454(98)00019-6
  24. T.R. Allen, J.T. Busby, G.S. Was, E.A. Kenik, On the mechanism of radiation-induced segregation in austenitic Fe-Cr-Ni alloys, J. Nucl. Mater. 255 (1) (1998) 44-58. https://doi.org/10.1016/S0022-3115(98)00010-5
  25. T.R. Allen, G.S. Was, E.A. Kenik, The effect of alloy composition on radiation-induced segregation in Fe Cr Ni alloys, J. Nucl. Mater. 244 (3) (1997) 278-294. https://doi.org/10.1016/S0022-3115(96)00744-1
  26. S. Watanabe, Y. Takamatsu, N. Sakaguchi, H. Takahashi, Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel, J. Nucl. Mater. 283-287 (2000) 152-156. https://doi.org/10.1016/S0022-3115(00)00204-X
  27. T.S. Duh, J.J. Kai, F.R. Chen, L.H. Wang, Numerical simulation modeling on the effects of grain boundary misorientation on radiation-induced solute segregation in 304 austenitic stainless steels, J. Nucl. Mater. 294 (3) (2001) 267-273. https://doi.org/10.1016/S0022-3115(01)00493-7
  28. K.G. Field, Y. Yang, T.R. Allen, J.T. Busby, Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments, Acta Mater. 89 (2015) 438-449. https://doi.org/10.1016/j.actamat.2015.01.064
  29. J.P. Wharry, G.S. Was, The mechanism of radiation-induced segregation in ferritic-martensitic alloys, Acta Mater. 65 (2014) 42-55. https://doi.org/10.1016/j.actamat.2013.09.049
  30. G.S. Was, Fundamentals of Radiation Materials Science Metals and Alloys, 2007.
  31. L.D. Xia, W.B. Liu, H.P. Liu, J.H. Zhang, H. Chen, Z.G. Yang, C. Zhang, Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel, Nucl. Eng. Technol. 50 (1) (2018) 132-139. https://doi.org/10.1016/j.net.2017.10.012
  32. P. Lejcek, Grain Boundary Segregation in Metals, 2010.
  33. Y.N. Osetsky, A. Serra, Vacancy and interstitial diffusion in bcc-Fe, Defect Diffusion Forum 143 (1997) 155-160. https://doi.org/10.4028/www.scientific.net/ddf.143-147.155
  34. S.J. Rothman, L.J. Nowicki, G.E. Murch, Self-diffusion in austenitic Fe-Cr-Ni alloys, J. Phys. F Met. Phys. 10 (3) (1980) 383-398. https://doi.org/10.1088/0305-4608/10/3/009
  35. J.P. Wharry, Z. Jiao, G.S. Was, Application of the inverse Kirkendall model of radiation-induced segregation to ferritic-martensitic alloys, J. Nucl. Mater. 425 (1-3) (2012) 117-124. https://doi.org/10.1016/j.jnucmat.2011.10.035
  36. D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (11) (1966) 1479-1484. https://doi.org/10.1016/0001-6160(66)90168-4

Cited by

  1. Defect cluster and nonequilibrium gas bubble associated growth in irradiated UMo fuels – A cluster dynamics and phase field model vol.542, 2020, https://doi.org/10.1016/j.jnucmat.2020.152441
  2. Microstructure-Dependent Rate Theory Model of Radiation-Induced Segregation in Binary Alloys vol.8, 2020, https://doi.org/10.3389/fmats.2021.682686
  3. Comments on “Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel, Scr. Mater. 65 (2011) 509-512” vol.209, 2020, https://doi.org/10.1016/j.scriptamat.2021.114412
  4. Microstructure-dependent rate theory model of defect segregation and phase stability in irradiated polycrystalline LiAlO2 vol.30, pp.2, 2022, https://doi.org/10.1088/1361-651x/ac4001