DOI QR코드

DOI QR Code

Reference based simulation study of detector comparison for BNCT-SPECT imaging

  • Kim, Moo-Sub (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea) ;
  • Shin, Han-Back (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University, College of Medicine) ;
  • Choi, Min-Geon (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea) ;
  • Monzen, Hajime (Department of Medical Physics, Graduate School of Medical Science, Kindai University) ;
  • Shim, Jae Goo (Department of Radiologic Technology Daegu Health College) ;
  • Suh, Tae Suk (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea) ;
  • Yoon, Do-Kun (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
  • Received : 2019.04.17
  • Accepted : 2019.07.01
  • Published : 2020.01.25

Abstract

To investigate the optimal detector material for prompt gamma imaging during boron neutron capture therapy, in this study, we evaluated the characteristic regarding radiation reaction of available detector materials using a Monte Carlo simulation. Sixteen detector materials used for radiation detection were investigated to assess their advantages and drawbacks. The estimations used previous experimental data to build the simulation codes. The energy resolution and detection efficiency of each material was investigated, and prompt gamma images during BNCT simulation were acquired using only the detectors that showed good performance in our preliminary data. From the simulation, we could evaluate the majority of detector materials in BNCT and also could acquire a prompt gamma image using the six high ranked-detector materials and lutetium yttrium oxyorthosilicate. We provide a strategy to select an optimal detector material for the prompt gamma imaging during BNCT with three conclusions.

Keywords

References

  1. R.F. Barth, J.A. Coderre, M.G.H. Vicente, T.E. Blue, Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res. 11 (2005) 3987-4002. https://doi.org/10.1158/1078-0432.CCR-05-0035
  2. R.F. Barth, A.H. Soloway, R.G. Fairchild, R.M. Brugger, Boron neutron capture therapy for cancer, Realities Prospects Canc. 70 (1992) 2995-3007.
  3. M.F. Hawthorne, The role of chemistry in the development of boron neutron capture therapy of cancer, Angew. Chem. Int. Ed. 32 (1993) 950-984. https://doi.org/10.1002/anie.199309501
  4. J.A. Coderre, G.M. Morris, The radiation biology of boron neutron capture therapy, Radiat. Res. 151 (1999) 1-18. https://doi.org/10.2307/3579742
  5. N.S. Hosmane, J.A. Maguire, Y. Zhu, M. Takagaki, Boron and gadolinium neutron capture therapy for cancer treatment, World Sci. (2012) 35-96.
  6. T. Kurihara, M. Yoshioka, T. Sugano, K. Sennyu, A. Matsumura, H. Matsumoto, H. Kobayashi, F. Inoue, Y. Kiyanagi, H. Nakashima, Construction of a BNCT facility using an 8-MeV high power proton linac in Tokai, in: Conf. Proc, 2012, pp. 4083-4085.
  7. E. Brunckhorst, Experimental Investigations of the Neutron Contamination in High-Energy Photon Fields at Medical Linear Accelerators, 2009.
  8. M. Carpano, M. Perona, C. Rodriguez, S. Nievas, M. Olivera, G.A. Santa Cruz, D. Brandizzi, R. Cabrini, M. Pisarev, G.J. Juvenal, Experimental studies of boronophenylalanine (10 BPA) biodistribution for the individual application of boron neutron capture therapy (BNCT) for malignant melanoma treatment, Int. J. Radiat. Oncol. Biol. Phys. 93 (2015) 344-352. https://doi.org/10.1016/j.ijrobp.2015.05.039
  9. V. Trivillin, M. Garabalino, L. Colombo, S. Gonzalez, R. Farias, A.M. Hughes, E. Pozzi, S. Bortolussi, S. Altieri, M. Itoiz, Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases, Appl. Radiat. Isot. 88 (2014) 94-98. https://doi.org/10.1016/j.apradiso.2013.11.115
  10. H. Joensuu, L. Kankaanranta, T. Seppala, I. Auterinen, M. Kallio, M. Kulvik, J. Laakso, J. Vahatalo, M. Kortesniemi, P. Kotiluoto, Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine, J. Neuro Oncol. 62 (2003) 123-134. https://doi.org/10.1023/A:1023293006617
  11. L. Kankaanranta, T. Seppala, H. Koivunoro, K. Saarilahti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Uusi-Simola, A. Makitie, Boron neutron capture therapy in the treatment of locally recurred head and neck cancer, Int. J. Radiat. Oncol. Biol. Phys. 69 (2007) 475-482. https://doi.org/10.1016/j.ijrobp.2007.03.039
  12. Y. Nakagawa, K. Pooh, T. Kobayashi, T. Kageji, S. Uyama, A. Matsumura, H. Kumada, Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams, J. Neuro Oncol. 62 (2003) 87-99. https://doi.org/10.1023/A:1023234902479
  13. Y. Nakagawa, H. Hatanaka, Boron neutron capture therapy: clinical brain tumor studies, J. Neuro Oncol. 33 (1997) 105-115. https://doi.org/10.1023/A:1005781517624
  14. C.P. Raaijmakers, M.W. Konijnenberg, L. Dewit, D. Haritz, R. Huiskamp, K. Philipp, A. Siefert, F. Stecher-Rasmussen, B.J. Mijnheer, Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gammaray analysis, Acta Oncol. 34 (1995) 517-523. https://doi.org/10.3109/02841869509094017
  15. S. Baechler, P. Kudejova, J. Jolie, J.-L. Schenker, N. Stritt, Prompt gamma-ray activation analysis for determination of boron in aqueous solutions, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 488 (2002) 410-418. https://doi.org/10.1016/S0168-9002(02)00466-7
  16. T. Matsumoto, M. Aoki, O. Aizawa, Phantom experiment and calculation for in vivo 10boron analysis by prompt gamma ray spectroscopy, Phys. Med. Biol. 36 (1991) 329. https://doi.org/10.1088/0031-9155/36/3/002
  17. P.M. af Rosenschold, D. Minarik, C. Ostlund, M. Ljungberg, C. Ceberg, Prompt gamma tomography during BNCT-a feasibility study, J. Instrum. 1 (2006) P05003. https://doi.org/10.1088/1748-0221/1/05/P05003
  18. Murata, T. Mukai, S. Nakamura, H. Miyamaru, I. Kato, Development of a thick CdTe detector for BNCT-SPECT, Appl. Radiat. Isot. 69 (2011) 1706-1709. https://doi.org/10.1016/j.apradiso.2011.05.014
  19. M. Manabe, S. Nakamura, I. Murata, Study on measuring device arrangement of array-type CdTe Detector for BNCT-SPECT, Rep. Practical Oncol. Radiother. 21 (2016) 102-107. https://doi.org/10.1016/j.rpor.2015.04.002
  20. Murata, S. Nakamura, M. Manabe, H. Miyamaru, I. Kato, Characterization measurement of a thick CdTe detector for BNCT-SPECT-Detection efficiency and energy resolution, Appl. Radiat. Isot. 88 (2014) 129-133. https://doi.org/10.1016/j.apradiso.2014.01.023
  21. J.-Y. Jung, B. Lu, D.-K. Yoon, K.J. Hong, H. Jang, C. Liu, T.S. Suh, Therapy region monitoring based on PET using 478 keV single prompt gamma ray during BNCT: a Monte Carlo simulation study, Phys. Med. 32 (2016) 562-567. https://doi.org/10.1016/j.ejmp.2016.02.010
  22. S.-m. Park, A. Aalipour, O. Vermesh, J.H. Yu, S.S. Gambhir, Towards clinically translatable in vivo nanodiagnostics, Nat. Rev. Mater. 2 (2017) 17014. https://doi.org/10.1038/natrevmats.2017.14
  23. J. Dey, M.A. King, Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography, IEEE Trans. Nucl. Sci. 56 (2009) 2739-2749. https://doi.org/10.1109/TNS.2009.2021765
  24. Gaitanis, G. Kontaxakis, G. Spyrou, G. Panayiotakis, G. Tzanakos, PET image reconstruction: a stopping rule for the MLEM algorithm based on properties of the updating coefficients, Comput. Med. Imag. Graph. 34 (2010) 131-141. https://doi.org/10.1016/j.compmedimag.2009.07.006
  25. T. Yokei, H. Shinohara, H. Onishi, Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study, Ann. Nucl. Med. 16 (2002) 11-18. https://doi.org/10.1007/BF02995286
  26. D.-K. Yoon, J.-Y. Jung, T.S. Suh, Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study, Appl. Phys. Lett. 105 (2014) 223507. https://doi.org/10.1063/1.4903345
  27. D.K. Yoon, J.Y. Jung, K. Jo Hong, K. Sil Lee, T. Suk Suh, GPU-based prompt gamma ray imaging from boron neutron capture therapy, Med. Phys. 42 (2015) 165-169.
  28. H.-B. Shin, D.-K. Yoon, J.-Y. Jung, M.-S. Kim, T.S. Suh, Prompt gamma ray imaging for verification of proton boron fusion therapy: a Monte Carlo study, Phys. Med. 32 (2016) 1271-1275. https://doi.org/10.1016/j.ejmp.2016.05.053
  29. D.-K. Yoon, J.-Y. Jung, S.-M. Han, T.S. Suh, Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study, J. Radioanal. Nucl. Chem. 303 (2015) 859-866. https://doi.org/10.1007/s10967-014-3572-5
  30. A. Valda, D. Minsky, A. Kreiner, A. Burlon, H. Somacal, Development of a tomographic system for online dose measurements in BNCT (Boron Neutron Capture Therapy), Braz. J. Phys. 35 (2005) 785-788. https://doi.org/10.1590/S0103-97332005000500017
  31. D.M. Minsky, A. Valda, A. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861. https://doi.org/10.1016/j.apradiso.2011.01.030
  32. G. Hu, S. Wang, Y. Li, L. Xu, P. Li, The influence of temperature gradient on energy resolution of Bi 4 Ge 3 O 12 (BGO) crystal, Ceram. Int. 30 (2004) 1665-1668. https://doi.org/10.1016/j.ceramint.2003.12.157
  33. G. Hull, B. Genolini, M. Josselin, I. Matea, J. Peyre, J. Pouthas, T. Zerguerras, Energy resolution of LaBr 3: Ce in a phoswich configuration with CsI: Na and NaI: Tl scintillator crystals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 695 (2012) 350-353. https://doi.org/10.1016/j.nima.2011.10.023
  34. M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, K.S. Shah, Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652 (2011) 264-267. https://doi.org/10.1016/j.nima.2010.08.064
  35. L.J. Meng, Z. He, Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 550 (2005) 435-445. https://doi.org/10.1016/j.nima.2005.04.076
  36. H. Nishimura, K. Hattori, S. Kabuki, H. Kubo, K. Miuchi, T. Nagayoshi, Y. Okada, R. Orito, H. Sekiya, A. Takada, Development of large area gamma-ray camera with GSO (Ce) scintillator arrays and PSPMTs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 573 (2007) 115-118. https://doi.org/10.1016/j.nima.2006.11.029
  37. H. Rothfuss, L. Byars, M.E. Casey, M. Conti, L. Eriksson, C. Michel, Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1087-1092. https://doi.org/10.1016/j.nima.2007.06.067
  38. P.-A. Soderstrom, F. Recchia, J. Nyberg, A. Al-Adili, A. Atac, S. Aydin, D. Bazzacco, P. Bednarczyk, B. Birkenbach, D. Bortolato, Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 638 (2011) 96-109. https://doi.org/10.1016/j.nima.2011.02.089
  39. Tengblad, T. Nilsson, E. Nacher, H.T. Johansson, J. Briz, M. Carmona-Gallardo, C. Cruz, V. Gugliermina, A. Perea, J.S. del Rio, LaBr 3 (Ce): LaCl 3 (Ce) phoswich with pulse shape analysis for high energy gamma-ray and proton identification, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 704 (2013) 19-26. https://doi.org/10.1016/j.nima.2012.11.094
  40. J. Trummer, E. Auffray, P. Lecoq, A. Petrosyan, P. Sempere-Roldan, Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 551 (2005) 339-351. https://doi.org/10.1016/j.nima.2005.06.047
  41. S. Watanabe, T. Tanaka, K. Oonuki, T. Mitani, S.i. Takeda, T. Kishishita, K. Nakazawa, T. Takahashi, Y. Kuroda, M. Onishi, Development of CdTe pixel detectors for Compton cameras, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 567 (2006) 150-153. https://doi.org/10.1016/j.nima.2006.05.164
  42. H. Yang, N. Menaa, F. Bronson, M. Kastner, R. Venkataraman, W. Mueller, Evaluation of a LiI (Eu) neutron detector with coincident double photodiode readout, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652 (2011) 364-369. https://doi.org/10.1016/j.nima.2010.08.119
  43. M. Kapusta, M. Balcerzyk, M. Moszynski, J. Pawelke, A high-energy resolution observed from a YAP: Ce scintillator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 421 (1999) 610-613. https://doi.org/10.1016/S0168-9002(98)01232-7
  44. F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, A high-resolution BaF 2 positron-lifetime spectrometer and experience with its long-term exploitation, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 443 (2000) 557-577. https://doi.org/10.1016/S0168-9002(99)01156-0
  45. Bartoli, N. Belcari, A. Del Guerra, S. Fabbri, Simultaneous PET/SPECT imaging with the small animal scanner YAP-(S) PET, in: Nuclear Science Symposium Conference Record, 2007. NSS'07. IEEE, IEEE, 2007, pp. 3408-3413.
  46. Z. He, R.D. Vigil, Investigation of pixellated $HgI2{\gamma}$-ray spectrometers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 492 (2002) 387-401. https://doi.org/10.1016/S0168-9002(02)01127-0
  47. K.J. Hong, Y. Choi, J.H. Jung, J. Kang, W. Hu, H.K. Lim, Y. Huh, S. Kim, J.W. Jung, K.B. Kim, A prototype MR insertable brain PET using tileable GAPD arrays, Med. Phys. 40 (2013).
  48. H. Yu, X. Tang, D. Shu, Y. Liu, C. Geng, C. Gong, S. Hang, D. Chen, Influence of neutron sources and 10B concentration on boron neutron capture therapy for shallow and deeper non-small cell lung cancer, Health Phys. 112 (2017) 258-265. https://doi.org/10.1097/HP.0000000000000601
  49. A.R. Genady, J.A. Ioppolo, M.M. Azaam, E. Mohamed, New functionalized mercaptoundecahydrododecaborate derivatives for potential application in boron neutron capture therapy: synthesis, characterization and dynamic visualization in cells, Eur. J. Med. Chem. 93 (2015) 574-583. https://doi.org/10.1016/j.ejmech.2015.02.033
  50. R.G. Fairchild, J. Kalef-Ezra, S. Saraf, S. Fiarman, E. Ramsey, L. Wielopolski, B. Laster, F. Wheeler, Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR), in: Neutron Beam Design, Development, and Performance for Neutron Capture Therapy, Springer, 1990, pp. 185-199.
  51. Y. Eisen, A. Shor, C. Gilath, M. Tsabarim, P. Chouraqui, C. Hellman, E. Lubin, A gamma camera based on CdTe detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 474-478. https://doi.org/10.1016/S0168-9002(96)00364-6

Cited by

  1. Feasibility study on image reconstruction for single-photon emission computed tomography with limited projections by neural networks vol.986, 2020, https://doi.org/10.1016/j.nima.2020.164700