DOI QR코드

DOI QR Code

Rapid detection of beer-spoilage lactic acid bacteria: Modified hop-gradient agar with ethanol method

  • Hong, Lim Seok (Department of Food Science and Biotechnology, Dongguk University) ;
  • Kim, Ji Hyeon (Department of Food Science and Biotechnology, Dongguk University) ;
  • Kim, Wang June (Department of Food Science and Biotechnology, Dongguk University)
  • Received : 2020.03.05
  • Accepted : 2020.04.17
  • Published : 2020.06.30

Abstract

Hop-resistant lactic acid bacteria (LAB) are well-known, major beer-spoilage bacteria. The hop-gradient agar containing ethanol (c-HGA+E) method has been used to examine hop-resistance of beer-spoilage LAB. However, the selection of beer-spoilage bacteria by the c-HGA+E method is either too selective or too inclusive. Furthermore, it is accompanied by a complicated experimental procedure, high-cost and time. To overcome these disadvantages, the modified hop-gradient agar with ethanol (m-HGA+E) method was developed. The most remarkable modifications were the shape of the petri dish and the inoculation method for bacteria. The efficiency and validation of the m-HGA+E approach were proven by the formation of colonies at different hop concentrations in the bottom layer, co-culture with the bacteriocin producer and by PCR detection of hop-resistant genes. This study demonstrated that m-HGA+E is a rapid, economical, and easy method to monitor potential hop-resistant beer-spoilage LAB during the beer brewing process.

Keywords

References

  1. Ahn H, Kim J, Kim WJ. Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control 80: 59-66 (2017) https://doi.org/10.1016/j.foodcont.2017.04.022
  2. Back W. Colour atlas and handbook of beverage biology. Fachverlag Hans Carl, Nuremberg, Germany (2005)
  3. Bergsveinson J, Pittet V, Ziola B. RT-qPCR analysis of putative beerspoilage gene expression during growth of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-$344^T$ in beer. Appl. Microbiol. Biotechnol. 96: 461-470 (2012) https://doi.org/10.1007/s00253-012-4334-3
  4. Bunker H. The survival of pathogenic bacteria in beer. Proc. Euro. Brew. Conv. 5: 330-341 (1955)
  5. Callewaert R, Hugas M, De Vuyst L. Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented sausages. Int. J. Food Microbiol. 57: 33-42 (2000) https://doi.org/10.1016/S0168-1605(00)00228-2
  6. Deng Y, Liu J, Li H, Li L, Tu J, Fang H, Chen J, Qian F. An improved plate culture procedure for the rapid detection of beerspoilage lactic acid bacteria. J. Inst. Brew. 120: 127-132 (2014) https://doi.org/10.1002/jib.121
  7. Fujii T, Nakashima K, Hayashi N. Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. J. Appl. Microbiol. 98: 1209-1220 (2005) https://doi.org/10.1111/j.1365-2672.2005.02558.x
  8. Garofalo C, Osimani A, Milanovi V, Taccari M, Aquilanti L, Clementi F. The occurrence of beer spoilage lactic acid bacteria in craft beer production. J. Food Sci. 80: M2845-M2852 (2015) https://doi.org/10.1111/1750-3841.13112
  9. Haakensen MC, Butt L, Chaban B, Deneer H, Ziola B, Dowgiert T. horA-specific real-time PCR for detection of beer-spoilage lactic acid bacteria. J. Am. Soc. Brew. Chem. 65: 157-165 (2007) https://doi.org/10.1094/asbcj-2007-0611-01
  10. Haakensen M, Schubert A, Ziola B. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Int. J. Food Microbiol. 130: 56-60 (2009) https://doi.org/10.1016/j.ijfoodmicro.2009.01.001
  11. Hollerova I, Kubizniakova P. Monitoring Gram positive bacterial contamination in Czech breweries. J. Inst. Brew. 107: 355-358 (2001) https://doi.org/10.1002/j.2050-0416.2001.tb00104.x
  12. Howard GA. Institute of Brewing Analysis Committee estimation of the bitterness of beer. J. Inst. Brew. 74: 249-251 (1968) https://doi.org/10.1002/j.2050-0416.1968.tb03121.x
  13. Kang TK, Kim WJ. 2010. Characterization of an amylase-sensitive bacteriocin DF01 produced by Lactobacillus brevis DF01 Isolated from Dongchimi, Korean fermented vegetable. Kor. J. Food Sci. Ani. Res. 30: 795-803 (2010) https://doi.org/10.5851/kosfa.2010.30.5.795
  14. Kim M, Choi E, Kim J, Ahn H, Han H, Kim WJ. Effect of bacteriocin- producing Pediococcus acidilactici K10 on beer fermentation. J. Inst. Brew. 122: 422-429 (2016) https://doi.org/10.1002/jib.339
  15. Leroy F, Moreno MRF, De Vuyst L. Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int. J. Food Microbiol. 88: 235-240 (2003) https://doi.org/10.1016/S0168-1605(03)00185-5
  16. Menz G, Andrighetto C, Lombardi A, Corich V, Aldred P, Vriesekoop F. Isolation, identification, and characterisation of beer-spoilage lactic acid bacteria from microbrewed beer from Victoria, Australia. J. Inst. Brew. 116: 14-22 (2010) https://doi.org/10.1002/j.2050-0416.2010.tb00393.x
  17. Pattison TL, Geornaras I, von Holy A. Microbial populations associated with commercially produced South African sorghum beer as determined by conventional and $Petrifilm^{TM}$ plating. Int. J. Food Microbiol. 43: 115-122 (1998) https://doi.org/10.1016/S0168-1605(98)00103-2
  18. Rouse S, van Sinderen D. Bioprotective potential of lactic acid bacteria in malting and brewing. J. Food. Prot. 71:1724-1733 (2008) https://doi.org/10.4315/0362-028X-71.8.1724
  19. Sakamoto K, Konings WN. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 89: 105-124 (2003) https://doi.org/10.1016/S0168-1605(03)00153-3
  20. Schonberger C, Kostelecky T. 125th anniversary review: the role of hops in brewing. J. Inst. Brew. 117: 259-267 (2011) https://doi.org/10.1002/j.2050-0416.2011.tb00471.x
  21. Steiner E, Becker T, Gastl M. Turbidity and haze formation in beer-insights and overview. J. Inst. Brew. 116: 360-368 (2010) https://doi.org/10.1002/j.2050-0416.2010.tb00787.x
  22. Suzuki K, Koyanagi M, Yamashita H. Genetic characterization of non-spoilage variant isolated from beer-spoilage Lactobacillus brevis $ABBC45^C$. J. Appl. Microbiol. 96: 946-953 (2004) https://doi.org/10.1111/j.1365-2672.2004.02244.x
  23. Suzuki K, Iijima K, Ozaki K, Yamashita H. Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl. Environ. Microbiol. 71: 5089-5097 (2005) https://doi.org/10.1128/AEM.71.9.5089-5097.2005
  24. Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 173-191 (2006) https://doi.org/10.1002/j.2050-0416.2006.tb00247.x
  25. Suzuki K, Asano S, Iijima K, Kuriyama H, Kitagawa Y. Development of detection medium for hard-to-culture beer-spoilage lactic acid bacteria. J. Appl. Microbiol. 104: 1458-1470 (2008) https://doi.org/10.1111/j.1365-2672.2007.03669.x
  26. Taskila S, Neubauer P, Tuomola M, Breitenstein A, Kronlof J, Hillukkala T. Improved enrichment cultivation of beer spoiling lactic acid bacteria by continuous glucose addition to the culture. J. Inst. Brew. 115: 177-182 (2009) https://doi.org/10.1002/j.2050-0416.2009.tb00366.x
  27. Thelen K, Beimfohr C, Snaidr J. Evaluation study of the frequency of different beer-spoiling bacteria using the VIT analysis. Tech. Q. Master Brew. Assoc. Am. 43: 31-35 (2006)
  28. Weinberg ED. Gradient agar plates. Am. Biol. Teach. 21: 347-350 (1959) https://doi.org/10.2307/4439185
  29. Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int. J. Food Microbiol. 185: 41-50 (2014) https://doi.org/10.1016/j.ijfoodmicro.2014.05.003