DOI QR코드

DOI QR Code

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian (Institute of Opto-Electronic Information Science and Technology, Yantai University)
  • Received : 2020.05.06
  • Accepted : 2020.07.07
  • Published : 2020.07.27

Abstract

Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.

Keywords

References

  1. U. Dash and C.-U. Jung, J. Magn., 23, 345 (2018). https://doi.org/10.4283/jmag.2018.23.3.345
  2. S. Harikrishnan, S. Rossler, C. M. N. Kumar, H. L. Bhat, U. K. Rossler, S. Wirth, F. Steglich and S. Elizabeth, J. Phys.: Condens. Matter., 21, 096002 (2009). https://doi.org/10.1088/0953-8984/21/9/096002
  3. D. Ito, N. Fujimura, T. Yoshimura and T. Ito, J. Appl. Phys., 93, 5563 (2003). https://doi.org/10.1063/1.1564862
  4. S. Jandl, S. Mansouri, A. A. Mukhin, V. Y. Ivanov, A. Balbashov, M. M. Gospodino, V. Nekvasil and M. Orlita, J. Magn. Magn. Mater., 323, 1104 (2011). https://doi.org/10.1016/j.jmmm.2010.12.031
  5. V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov and L. D. Iskhakova, Phys. Solid State, 48, 1726 (2006). https://doi.org/10.1134/S1063783406090186
  6. S. Remsen, B. Dabrowski, O. Chmaissem, J. Mais and A. Szewczyk, J. Solid State Chem., 184, 2306 (2011). https://doi.org/10.1016/j.jssc.2011.06.037
  7. W. T. Wang, Korean J. Mater. Res., 29, 753 (2019). https://doi.org/10.3740/MRSK.2019.29.12.753
  8. K. Yadagiri, R. Nithya, N. Shukla and A.T. Satya, J. Alloys Compd., 695, 2959 (2017). https://doi.org/10.1016/j.jallcom.2016.11.373
  9. A. A. Bosak, C. Dubourdieu, J. -P. Senateur , O. Y. Gorbenko and A. R. Kaul, Cryst. Eng., 5, 355 (2002). https://doi.org/10.1016/S1463-0184(02)00047-3
  10. C. N. R. Rao and A. K. Cheetham, Science, 272, 369 (1996). https://doi.org/10.1126/science.272.5260.369
  11. R. Mahendiran, S. K. Tiwary, A.K. Raychadhuri, T. V. Ramakrisnan, R. Mahesh, N. Raganvittal and C. N. R. Rao, Phys. Rev. B: Condens. Matter Mater. Phys., 53, 3348 (1996). https://doi.org/10.1103/physrevb.53.3348
  12. K. Chanara, T. Ohno, M. Kasai and Y. Kozono, Appl. Phys. Lett., 63, 1990 (1993). https://doi.org/10.1063/1.110624
  13. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K.Samwer, Phys. Rev. Lett., 71, 2331 (1994). https://doi.org/10.1103/PhysRevLett.71.2331
  14. M. Sugiura, K. Uragou, M. Noda, M. Tachiki and T. Kobayashi, Jpn. J. Appl. Phys., 38, 2675 (1999). https://doi.org/10.1143/JJAP.38.2675
  15. Y. Watanabe, Phys. Rev. B: Condens. Matter Mater. Phys., 57, R5563 (1998). https://doi.org/10.1103/physrevb.57.r5563
  16. Y. M. Cui, L. W. Zhang, C. C. Wang, G. L. Xie, C. P. Chen and B. S. Cao, Appl. Phys. Lett., 86, 203501 (2005). https://doi.org/10.1063/1.1927715
  17. F. Y. Bruno, J. Garcia-Barriocanal, M. Torija, A. Rivera, Z. Sefrioui, C. Leighton, C. Leon and J. Santamaria, Appl. Phys. Lett., 92, 082106 (2008). https://doi.org/10.1063/1.2887905
  18. Y. Z. Chen, J. R. Sun, Y. W. Xie, D. J. Wang, W. M. Lu, S. Liang and B.G. Shen, Appl. Phys. Lett., 90, 143508 (2007). https://doi.org/10.1063/1.2719614
  19. H. C. Casey, Jr., J. Muth, S. Krishnankutty and J. M. Zavada, Appl. Phys. Lett., 68, 2867 (1996). https://doi.org/10.1063/1.116351
  20. J. H. Werner and H. H. Guttler, J. Appl. Phys., 69, 1522 (1991). https://doi.org/10.1063/1.347243
  21. W. Wang, D. Yuan, Y. Sun and Y. Sun, J. Appl. Phys., 106, 024106 (2009). https://doi.org/10.1063/1.3182822